B_s^0 Decays at Belle

Remi Louvot for the Belle collaboration

remi.louvot@epfl.ch

2010 Symposium on Prospects in the Physics of Discrete Symmetries Roma 10 December 2010

 B_{ϵ}^{0} Decays at Belle

DISCRETE2010 1 / 19

(日) (周) (日) (日) (日) (日) (000)

The Belle Experiment

EM calorim

 $CsI(Tl) = 16X_0$

8.2 GeV e

The Belle detector

- e⁺e⁻ collisions
- Located at KEK B factory (Tsukuba, Japan)
- ► Large-solid-angle (~ 92%)
- Efficient particle ID $(p, \pi^{\pm}, K^{\pm}, \gamma, \mu, e, K_{I}^{0})$
- World luminosity record

$$L_{\rm peak} = 2.11 \cdot 10^{34} {\rm cm}^{-1} {\rm s}^{-1}$$

- Data taken at $\Upsilon(5S)$ ($\sqrt{s} = 10867 \pm 1$ MeV)
- The only large data sample at this energy:
 - \sim 23.6 fb $^{-1}$ ightarrow this talk
 - Total sample: $\sim 120\,{
 m fb}^{-1}$
- $\Upsilon(5S)$ is above $B_s^0 \overline{B_s^0}$ threshold Study of B_s^0 meson possible !

bb cross section: subtraction of data taken below open-beauty threshold

$$\frac{1}{2} \underbrace{\mathcal{B}(\Upsilon(5S) \to D_s X)}_{f_s} = f_s \times \underbrace{\mathcal{B}(B_s \to D_s X)}_{f_s} + (1 - f_s) \times \frac{1}{2} \underbrace{\mathcal{B}(\Upsilon(4S) \to D_s X)}_{f_s}$$

- ▶ 15% uncertainty, mainly due to model-dependent estimates.
- **•** Dominant systematics for our branching fractions.
- Current normalization, in 23.6 fb^{-1} (today's data set):

$$N_{B_s^0} = 2 \cdot L_{int} \cdot \sigma(b\overline{b}) \cdot f_s \approx 2.8 \cdot 10^6$$

- Alternative methods under consideration. The most promising:

Remi Louvot (EPFL)

 B_s^0 Decays at Belle

DISCRETE2010 3 / 19

Physics at $\Upsilon(5S)$: B_s^0 Production

Full reconstruction of the B_s^0 . Observables: $(E_b^* = \sqrt{s}/2)$

- Beam-constrained mass: $M_{\rm bc} = \sqrt{E_{\rm b}^{*2} p_{B_s^0}^{*2}}$
- Energy difference: $\Delta E = E_{B_s^0}^* E_b^*$
- ▶ 3 production modes: $\Upsilon(5S) \rightarrow B_s^* \overline{B}_s^*, \ \Upsilon(5S) \rightarrow B_s^* \overline{B}_s^0 \text{ and } \Upsilon(5S) \rightarrow B_s^0 \overline{B}_s^0.$
- $B_s^* \to B_s^0 \gamma$ cannot be reconstructed (γ too soft)
- ▶ In the $(M_{\rm bc}, \Delta E)$ plane, B_s^0 candidates are in 3 signal regions

A "standard candle" for B_s^0 : $B_s^0 \to D_s^- \pi^+$

RL et al. (Belle) Phys. Rev. Lett. 102, 021801 (2009)

$\mathcal{B}(B_s^0 o D_s^- \pi^+) = \left(3.67^{+0.35}_{-0.33}(\mathrm{stat.})^{+0.43}_{-0.42}(\mathrm{syst.}) \pm 0.49(f_s) ight) imes 10^{-3}$

- > 20% uncertainties, f_s is a crucial source of systematics
- ▶ large $f_{B_s^*B_s^*}$ confirmed (1st Belle value: $(93_{-9}^{+7} \pm 1)\%$ [PRD 76, 012002 (07)])
- $m_{B_s^*}$ is 2.6 σ larger than CLEO [O. Aquines *et al.* (CLEO) PRL 96, 152001 (06)].
- \blacktriangleright $m_{B_s^*}(m_{B_s^0})$ is the 1st (2nd) most precise measurement so far.

Remi Louvot (EPFL)

DISCRETE2010 5 / 19

Study of $B^0_s \rightarrow D^{*-}_s \rho^+$

RL et al. (Belle) Phys. Rev. Lett. 104, 231801 (2010)

Scalar → Vector + Vector: Longitudinal and Transverse polarizations are possible.
 Decay width depends on the "longitudinal polarization fraction" f_l

 $\frac{d^2\Gamma}{d\cos\theta_{D_s^*}d\cos\theta_\rho} \propto 4f_L \sin^2\theta_{D_s^*}\cos^2\theta_\rho + (1-f_L)\left(1+\cos^2\theta_{D_s^*}\right)\sin^2\theta_\rho$

Observation of $B_s^0 \rightarrow D_s^{*-} \rho^+$

• $N(B_s^*\bar{B}_s^*) = 77.8^{+14.5}_{-13.4}$ (stat.) ± 3.3 (fit) events (7.4 σ significance)

 $\mathcal{B}(\mathsf{B}^0_{\mathsf{s}} o \mathsf{D}^{*-}_{\mathsf{s}}
ho^+) = \left(11.8^{+2.2}_{-2.0}(\mathrm{stat.}) \pm 1.7(\mathrm{syst.}) \pm 1.8(\mathsf{f}_{\mathsf{s}})
ight) imes 10^{-3}$

$$\mathbf{f_L} = \mathbf{1.05}_{-0.10}^{+0.08} + 0.03 \quad \text{or} \quad f_L \in [0.93, 1.00] \text{ at } 68\% \text{ C.L.}$$

Remi Louvot (EPFL)

김 국가 김 국가 도망한

CP violation in B_s^0 decays

 B⁰_s decays are interesting for SM tests and for NP searches. They can provide tests of the CKM source of CP violation.

> Dunietz, Phys. Rev. D 52, 3048 (1995) Dunietz, Fleischer & Nierste, Phys. Rev. D 63, 114015 (2001)

- ▶ Non-flavor specific tree decay (not sensitive to NP). For instance $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$, $\mathcal{B} \sim \mathcal{O}(10^{-4})$, can be used
 - ▶ to measure γ

Aleksan, Dunietz & Kayser, Z. Phys. C 54, 653 (1992) Fleischer, Nucl. Phys. B 671, 459 (2003)

• to resolve the ambiguity on the $\Delta\Gamma_s$ sign.

Nandi & Nierste, Phys. Rev. D 77, 054010 (2009)

DISCRETE2010 8 / 19

4 E N 4 E N

$B_s^0 \rightarrow CP$ -eigenstate Decays

- Charmless $B_s^0 \to K^+ K^-$ decay (penguin)
 - may be sensitive to NP
 - London & Matias, Phys. Rev. D 70, 031502 (2004) can measure $\phi_1(\beta)$ and $\phi_3(\gamma)$ (with $B^0 \to \pi^+\pi^-$)

 $\flat b \rightarrow c\bar{c}s \text{ transition are very small in the SM} \xrightarrow{\text{Fleischer, Phys. Lett. B 459, 306 (1999)}}_{\text{Ball & Fleischer, Phys. Lett. B 475, 111 (2000)}}$

$$B_s^0 \to D_s^{(*)+} D_s^{(*)-}, B_s^0 \to J/\psi \phi, B_s^0 \to J/\psi K_s^0, B_s^0 \to J/\psi \eta^{(')}, B_s^0 \to J/\psi f_0, \dots$$

$$B^0_s \to D^{(*)+}_s D^{(*)-}_s \text{ dominates } \Delta\Gamma_s$$

$$\Delta\Gamma^{CP} = \Gamma(CP - \text{even}) - \Gamma(CP - \text{odd}) \approx \Gamma\left(B^0_{s,\text{short}} \to D^{(*)}_s D^{(*)}_s\right)$$

Aleksan et al., Phys. Lett. B 316, 567 (1993)

The first step is to establish these modes!

- ► Decays with π^0 and/or γ are hard for hadron-colliders experiments Belle can contribute!
- ► CP-violation analysis need more statistics and better time resolution ~ 0.06 ps (~ 30 times better than for B⁰ !).

Prospects and workarounds:arXiv:1008.1541 (SuperB);arXiv:1005.5012 (Belle H)Remi Louvot (EPFL) B_s^0 Decays at BelleDISCRETE20109 / 19

Evidence for $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

RL et al. (Belle) Phys. Rev. Lett. 102, 021801 (2009)

- reco. similar to $B_s^0 o D_s^- \pi^+$
- Replace the π^+ by a K^+ .
- Cabbibo suppressed $\rightarrow O(10)$ times less signal
- π misidentification !

 $N(\text{Signal}) \sim N(B_s^0 \rightarrow D_s^- \pi^+, \pi \text{ misid.})$

Fit Result: N(Signal) = 6.7^{+3.4}_{-2.7}
 3.5σ evidence (w/ systematics) !

Direct measurement of branching fraction:

$$\mathcal{B}(B^0_s o D^{\mp}_s K^{\pm}) = \left(2.4^{+1.2}_{-1.0}(\mathrm{stat.}) \pm 0.3(\mathrm{syst.}) \pm 0.3(f_s)\right) imes 10^{-4}$$

► Ratio with $B_s^0 \rightarrow D_s^- \pi^+$: $\mathcal{B}(B_s^0 \rightarrow D_s^\mp K^\pm)/\mathcal{B}(B_s^0 \rightarrow D_s^- \pi^+) = (6.5^{+3.5}_{-2.9})\%$ \rightarrow compatible with CDF (102 events): $(9.7 \pm 2.0)\%$

[T. Aaltonen et al. (CDF) PRL 103, 191802 (09)]

Better precision expected with 120 /fb ...

Remi Louvot (EPFL)

DISCRETE2010 10 / 19

• Observation of $23.4^{+5.5}_{-6.3}$ $B^0_s \to K^+K^-$ events (5.8 σ) Direct BR measurement:

$$\mathcal{B}(\mathsf{B}^0_s o \mathsf{K}^+\mathsf{K}^-) = \left(3.8^{+1.0}_{-0.9} \pm 0.5 \pm 0.5(\mathsf{f}_s)
ight) imes 10^{-5}$$

confirms CDF results (102 events): $(2.44\pm0.14\pm0.46) imes10^{-5}$ [M. Morello, Nucl. Phys. B

Remi Louvot (EPFL)

Observation of $B_s^0 \rightarrow J/\psi \eta$

Belle, Belle-conf-0902, arXiv:0912.1434 (2009)

First Observation of 14.9 ± 4.1 events (7.3σ)

$$\mathcal{B}\left(\mathsf{B_s^0}
ightarrow \mathsf{J}/\psi\eta
ight) = \left(\mathbf{3.32 \pm 0.87^{+0.32}_{-0.28} \pm 0.42(f_s)}
ight) imes 10^{-4}$$

Remi Louvot (EPFL)

DISCRETE2010 12 / 19

Observation of $B_s^0 \rightarrow J/\psi \eta'$

Belle, Belle-conf-0902, arXiv:0912.1434 (2009)

The $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$ Analysis

S. Esen et al. (Belle) Phys. Rev. Lett. 105, 201802 (2010)

- CKM-favored and CP-even eigenstate (in heavy-quark limit).
- Dominates ΔΓ (this relation has ~3% theoretical uncertainty):

$$\frac{\Delta\Gamma_{s}^{CP}}{\Gamma_{s}} = \frac{2 \times \mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{(*)+}D_{s}^{(*)-}\right)}{1 - \mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{(*)+}D_{s}^{(*)-}\right)}$$

R. Aleksan et al., Phys. Lett. B 316, 567 (1993)

- Full reconstruction of $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$
- Large B.R. ($\sim 10^{-2}$) but low efficiency ($\sim 10^{-4}$)
- ► D_s^+ reconstructed in 6 final states: $\phi \pi^+$, $K_S^0 K^+$, $\bar{K}^{*0} K^+$, $\phi \rho^+$, $K_S^0 K^{*+}$ and $\bar{K}^{*0} K^{*+}$
- Selection of one candidate (all channels) per event.
- ▶ $D_s^{*+} \rightarrow D_s^+ \gamma$: photon energy is low ($E_\gamma < 150$ MeV)!
- Contamination between the 3 modes ("cross feed")

when a photon is missing or added by error.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

 $B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}$ Fit

S. Esen et al. (Belle) Phys. Rev. Lett. 105, 201802 (2010)

Simultaneous fit of the 3 modes. For one mode, cross feed from the 2 others is included

Signal has 2 components: right and wrong combinations

Search for $B_s^0 \rightarrow J/\psi f_0(980)$

Contribution to FPCP 2010 (arXiv:1009.2605)

CP-eigenstate (odd) mode with a final state with only 4 charged particles

Expectations:

$$\begin{array}{l} & \frac{\mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ f_{0})\mathcal{B}(f_{0} \to \pi^{+}\pi^{-})}{\mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ \phi)\mathcal{B}(\phi \to K^{+}K^{-})} \approx 0.2 \ (\text{Stone+Zhang [PRD 79, 074024]}) \\ & \frac{\mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ b)\mathcal{B}(f_{0} \to \pi^{+}\pi^{-})}{\mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ b)\mathcal{B}(\phi \to K^{+}K^{-})} = 0.42 \pm 0.11 \ (\text{CLEO} \ (D_{s} \to f_{0}e^{+}\nu_{e}) \ [\text{PRD 80, 052009]}) \\ & \to \mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ f_{0})\mathcal{B}(f_{0} \to \pi^{+}\pi^{-}) \approx (1.3 - 2.7) \ \mathbf{10^{-4}} \\ & \mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ f_{0}) = (3.1 \pm 2.4) \ \mathbf{10^{-4}} \ \text{QCD} \ (\text{LO}) \ [\text{PRD 81, 074001]} \\ & \text{with} \ \mathcal{B}(f_{0} \to \pi^{+}\pi^{-}) = \left(50^{+7}_{-9}\right) \% \ \text{BES data [CLEO, PRD 80, 052009]} \\ & \to \mathcal{B}(\mathcal{B}_{s}^{0} \to J/\psi \ f_{0})\mathcal{B}(f_{0} \to \pi^{+}\pi^{-}) = (\mathbf{1.6} \pm \mathbf{1.3}) \ \mathbf{10^{-4}} \end{array}$$

Our analysis:

▶
$$J/\psi \to e^+e^-$$
 or $\mu^+\mu^-$; $f_0 \to \pi^+\pi^-$
▶ $(\Delta E, M_{\pi^+\pi^-})$ 2D fit in -0.1 GeV< ΔE < 0.2 GeV and $M_{\pi^+\pi^-}$ < 1.8 GeV/ c^2

▶ includes backgrounds from $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ (peaks in ΔE) and others J/ψ modes.

Remi Louvot (EPFL)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 ののの

Search for $B_s^0 \rightarrow J/\psi f_0(980)$

Contribution to FPCP 2010 (arXiv:1009.2605)

- We are sensitive to the region of interest !
- ▶ More to come with 120 fb⁻¹ + improved analysis ...

Remi Louvot (EPFL)

 B_s^0 Decays at Belle

Conclusion:

- Belle has analysed ~ 2.8 millions of B_s^0 (total on tape: ~ 14 millions)
- Study of (experimentally) dominant CKM-favored decay modes.
 - Study of $B_s^0 \rightarrow D_s^- \pi^+$
 - ▶ First observations of $B_s^0 \to D_s^{*-}\pi^+$, $B_s^0 \to D_s^-\rho^+$ and $B_s^0 \to D_s^{*-}\rho^+$.
- ▶ B.F. precision suffers mainly from the imprecise fraction $f_s = N_{B_s^{(*)}\bar{B}_s^{(*)}}/N_{b\bar{b}}$
- Evidence for $B_s^0 \to D_s^{\mp} K^{\pm}$ but statistic is low!
- CP-eigenstate modes:
 - Analysis of $B^0_s \to hh$, but not competitive with Tevatron
 - Evidences for $B_s^0 \to J/\psi \, \eta^{(')}$
 - Competitive measurement of $\Delta\Gamma^{CP}/\Gamma$ with $B_s^0 \rightarrow D_s^{(*)}D_s^{(*)}$
 - Search for $B_s^0 \rightarrow J/\psi f_0$: First direct limit,

very close to the expected signal!

Thank you.

- Our total $\Upsilon(5S)$ sample is **5 times larger** \longrightarrow More to come soon!
- ▶ Good B_s^0 prospects at Belle2/superB → talks of A. Cervelli and S. Korpar

Remi Louvot (EPFL)

DISCRETE2010 20 / 19

Di-lepton Asymmetry at Belle

- ► Rescale of existing results from Belle [PRD 73, 112002 (06)] and Babar [PRL 96, 251802 (06)] to the full Belle data sample (710 fb⁻¹ at \u03c6(4S) and 120 fb⁻¹ at \u03c6(5S))
- ► B_s^0 mixed with 50% probability \rightarrow 3 times more same-sign leptons than $B^0 \bar{B}^0$.

$$egin{aligned} & a^{B^0_s}_{sl} pprox 1.2\% \ & a^{B_d}_{sl} pprox 0.2\% \end{aligned}$$

B_s^0 decay modes with large statistics?

 \blacktriangleright Measurements of precise exclusive modes \longrightarrow LHC experiments need a reference point for B^0_s

- Measurements of B_s^0, B_s^* properties (masses, widths, angular distr.)
- ► Comparison between B^0 and B_s^0 is theoretically interesting \longrightarrow tests of HQET, factorization, etc.
- ► Comparison between $\Upsilon(5S) \to B_s^* \bar{B}_s^*$, $\Upsilon(5S) \to B_s^* \bar{B}_s^0$ + c.c., $\Upsilon(5S) \to B_s^0 \bar{B}_s^0$

 $B_s^0 \rightarrow D_s^{(*)-}h^+$ Summary

At LO: 1 tree-level diagram

Measurements compatible with

- HQET predictions [A. Deandrea et al., Phys. Lett. B 318, 549 (93)]
- ▶ B⁰ decays (as expected in the heavy-quark limit and small W-exchange ampl.)

Mode	\mathcal{B} (Belle)	Theory (HQET)	B ⁰ partner (PDG)
$B_s^0 ightarrow D_s^- \pi^+$	$3.67^{+0.35}_{-0.33}{}^{+0.43}_{-0.42}\pm0.49$	2.8	2.68 ± 0.13
$B_s^0 ightarrow D_s^{*-} \pi^+$	$2.4^{+0.5}_{-0.4}\pm 0.3\pm 0.4$	2.8	2.76 ± 0.13
$B_s^0 ightarrow D_s^- ho^+$	$8.5^{+1.3}_{-1.2}\pm1.1\pm1.3$	7.5	7.6 ± 1.3
$B_s^0 ightarrow D_s^{*-} ho^+$	$11.9^{+2.2}_{-2.0}\pm1.7\pm1.8$	8.9	$\textbf{6.8}\pm\textbf{0.9}$

• Large longitudinal polarization of $B_s^0
ightarrow D_s^{*-}
ho^+$

- also expected from theory: 83% [Li et al. Phys. Rev. D 78, 014018 (08)]
- comparable with $B^0 \to D^{*-} \rho^+$: 88.5 \pm 2.0%, [CLEO PRD67, 112002].