

Status and prospects for *B* physics and discrete symmetries at Tevatron

Kevin Pitts University of Illinois

DISCRETE 2010 Sapienza Università di Roma December 6, 2010

Outline

- Introduction
 - B physics at the Tevatron
 - Detectors & datasets
- Physics with (semi)leptonic final states
 - $\rightarrow B_{s} \rightarrow J/\psi\phi$
 - Dimuon CP asymmetry
 - → Rare decays: $B_s \rightarrow \mu^+ \mu^-$, $\mu^+ \mu^- \phi$
- Physics with hadronic final states
 - A bit of history
 - $\rightarrow B \rightarrow D^{0}K$
 - → Charmless two-body decays ($b \rightarrow u \overline{u} d$, $u \overline{u} s$, $s \overline{s} s$)
 - \rightarrow CP asymmetry in $\mathcal{D}^{\mathcal{O}} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$
- A bit more on prospects
- Conclusion

B Physics at the Tevatron

Pros

- Large cross-section
 - → ~3-5 µbarn "reconstructable"
 - → At 2x10³²cm⁻²s⁻¹ ⇒ ~800Hz of reconstructable BB!!
- All B species produced
 - $\Rightarrow B_u, B_d, B_s, B_c, \Lambda_b, \dots$
- CP symmetric initial state
 - \rightarrow Equal numbers of q and \overline{q}

• Large inelastic background

Cons

- Triggering and reconstruction are challenging
- → Modes with π^0 's are tough
- Reconstruct a *B* hadron,~20-40% chance 2nd *B* is within detector acceptance
- p_{τ} spectrum relatively soft
 - → Typical p_T(B)~10-15 GeV for reconstructed B's (βγ≈ 2-3)

Detectors

Both detectors

- silicon microvertex detectors
- axial solenoid
- central tracking
- high rate trigger/DAQ system
- → calorimeter & muon systems

DØ fiber tracker installation

CDF silicon detector installation

DØ

- Excellent electron & muon ID
- Excellent tracking acceptance
- CDF
 - Silicon vertex trigger
 - → Particle ID (TOF and dE/dx)
 - Excellent mass resolution

Datasets

- Tevatron performing well
 Delivering 2.5 fb⁻¹/year
- Run II total: 10 fb⁻¹ delivered
 analyze 75-80% of delivered
 Show 1-6 fb⁻¹ results today

- Peak \mathcal{L}_{inst} 3.5-4x10³² cm⁻² s⁻¹
- 6-8 interactions per crossing
- Reduced efficiency for flavor physics at high \mathcal{L}_{inst}

Tevatron run extension?

B physics and discrete symmetries at the Tevatron

Comments

- Tevatron experiments primarily contribute measurements of B_s, B_c, b-baryons
 - \rightarrow Can contribute to B^0 and B^+ in a few places

 $B \rightarrow DK, \ \mathcal{A}_{CP}(B^0 \rightarrow K\pi), \ B^0 \rightarrow \mu^+\mu^-, \ B^0 \rightarrow \mu^+\mu^- \ K^*,$

 $\mathcal{A}_{CP}(B^{+} \rightarrow J/\psi K^{+}), B^{+} \rightarrow \phi K^{+}, \tau_{B+}/\tau_{B0}$

- → In many cases (e.g. lifetimes, mixing) B⁰ and B⁺ are calibration or normalization modes...
- In all cases, trigger imposes a significant bias (kinematic, decay time) that must be dealt with...
- Other than a few special modes, typically require allcharged final state
- Experiments are mature, analyses have developed well beyond their original projections.

B_s Mixing

 Mixing proceeds through "box" diagrams:

- oscillation frequency, $\Delta m_s \Delta m_s \propto |V_{ts}|^2$ and $|V_{ts}|/|V_{td}| \approx 6$
- Updated CDF analysis (used for flavor tagging calibration) $\Delta m_s = 17.79 \pm 0.07$ (stat) ps⁻¹
- What about the phase of V_{ts}?

CP Violation in $B_s \rightarrow J/\psi \phi$ Decays

Analogous to the neutral B^0 system, *CP* violation in B_s system is accessible through interference of decays with and without mixing:

- New physics particles running in the mixing diagram may enhance β_s

- CDF + DØ combination done by the Tevatron B Working Group: http://tevbwg.fnal.gov/

- Combination of 2.8 fb⁻¹ analyses showed 2.1σ deviation from SM

$B_s \rightarrow J/\psi\phi$ New Results

DØ

→ 3435 signal events

Check for s-wave KK in data

• CDF

- → 6500 signal events
- → Include s-wave KK component in fit.

Trends are the same as before, but both experiments now see SM consistency at about 1σ see Louise Oakes' talk on Friday

Dimuon charge asymmetry

 Search for CP violation in mixing using same sign dimuon events from semileptonic B decays:

$$A_{sl}^{b} \equiv \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

- → N_b^{++} , N_b^{--} number of events with two *b* hadrons decaying semileptonically producing two same-sign muons
 - One muon comes from direct semileptonic decay $b \rightarrow \mu^- X$
 - Second muon comes from direct semileptonic decay after mixing $\overline{b} \to b \to \mu^- X$
- Derived from dimuon and inclusive muon asymmetries:

$$A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}, \text{ and } a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}}$$

Experimental issues

- use one muon as the "tag" and the other as the "probe".
- At Tevatron, both *B*⁰ and *B*_s contribute.
- Lots of subtleties, but two main issues:
 - 1. Asymmetric backgrounds from kaons faking μ
 - 2. Asymmetric μ^* and μ^- acceptance/efficiency

- Deal with acceptance/efficiency issue by periodically reversing polarity on central solenoid and muon toroids.
 - Check residual asymmetry with data.

Fake muon backgrounds

- σ(K+N)<σ(K⁻N)
 - → more K^* get through calorimeter making fake μ
- Need to know:
 - \rightarrow Number K faking μ
 - \rightarrow $K^{+} \rightarrow \mu^{+}$ vs. $K^{-} \rightarrow \mu^{-}$
- Define sources of kaons:

$$K^{*0} \to K^{+}\pi^{-}$$
$$\varphi(1020) \to K^{+}K^{-}$$

- Require that the kaon is identified as a muon
- Compute asymmetry from observed +/– yields

μμ charge asymmetry result

DØ 6.1 fb⁻¹ analysis yields:

 $A_{sl}^{b} = (-0.957 \pm 0.251 (\text{stat}) \pm 0.146 (\text{syst}))\%$

• Result from $B_s \rightarrow J/\psi\phi$ consistent with dimuon asymmetry

Projections for dimuon A_{CP}

- DØ dimuon A_{CP} has a statistical error of 0.25% using 6.1 fb⁻¹
- Can CDF perform this measurement?
 - Cannot reverse magnet polarity
 - Probably not a major concern, CDF axially symmetric
 - Dominant charge bias is in central tracker at low momentum, can be measured with other modes.
 - \rightarrow DØ has better muon coverage at high $|\eta|$

CDF 1.6 fb⁻¹ dimuon analysis

CDF used a different technique

- Use muon impact parameter information to fit for sample composition.
- → A_{sL} = 0.0080 ± 0.0090(stat) ± 0.0068(syst)

Scaling to 7 fb⁻¹ would have statistical error of 0.45%
 Unclear if systematics scale with statistics using CDF technique

• $B_s \rightarrow \mu\mu$ is highly suppressed in SM

•Some new physics models enhance BR significantly.

Projection for $B_s \rightarrow \mu^+ \mu^-$

 $B_s \rightarrow \mu^+ \mu^- h$

• e^+e^-B factory results for $A_{fb}(B^0 \rightarrow \mu^+\mu^-K^*)$ shows interesting behavior

Outline

- Introduction
 - B physics at the Tevatron
 - Detectors & datasets
- Physics with (semi)leptonic final states
 - $\rightarrow B_{s} \rightarrow J/\psi\phi$
 - Dimuon CP asymmetry
 - → Rare decays: $B_s \rightarrow \mu^+ \mu^-$, $\mu^+ \mu^- \phi$
- Physics with hadronic final states
 - A bit of history
 - $\rightarrow B \rightarrow D^{O}K$
 - → Charmless two-body decays ($b \rightarrow u\bar{u}d$, $u\bar{u}s$, $s\bar{s}s$)
 - \rightarrow CP asymmetry in $D^{0} \rightarrow \pi^{+}\pi^{-}$
- A bit more on prospects
- Conclusion

We've come a long way...

- Success of the Tevatron B program has benefitted from:
 - More luminosity
 - Better detectors, triggers, DAQ systems
 - Better understanding of heavy flavor production
 - Improved of analysis techniques
- Two <u>major</u> transitions:
 - silicon microvertex detector (~1991)
 - 2. utilizing silicon in the trigger (~2002)

2009 Panofsky Prize recipients

What do we get with the SVT?

B physics and discrete symmetries at the Tev

proper time [cm] slide 30

Towards CP angle γ from $B^- \rightarrow D^0 K^-$

 γ could be extracted by exploiting the interference between the processes $\overline{b} \rightarrow \overline{cus}$ ($B^* \rightarrow \overline{D}^0 K^*$) and $\overline{b} \rightarrow \overline{ucs}$ ($B^* \rightarrow D^0 K^*$)

•<u>ADS (Atwood-Dunietz-Soni) method</u> ([PRL78,3257;PRD63,036005]) uses the $B^{\pm} \rightarrow D \ K^{\pm}$ decays with D reconstructed in the doubly cabibbo suppressed $D^{0}_{DCS} \rightarrow K^{\pm} \pi^{-}$

Only requires extraction of yields by charge, Does not require flavor tagging or time dependent measurement

ADS analysis

- Looking for "wrong sign" $B^+ \rightarrow [K^-\pi^+]K^+$ decays from:
 - \rightarrow Color suppressed $B^{+} \rightarrow D^{O} K^{+}$ with $D^{O} \rightarrow K^{-} \pi^{+}$
 - → Cabibbo favored $B^{*} \rightarrow \overline{D}^{O} K^{*}$ with DCS $\overline{D}^{O} \rightarrow K^{-} \pi^{*}$

→ Total sample about 19,000 B^{\pm} → $DK/D\pi$ events

 $B^{\pm} \rightarrow D^{0} K / D^{0} \pi$

- Use kinematic and particle ID information to extract D⁰K component
- Cabibbo favored modes:

uses the $B^{\pm} \rightarrow D K^{\pm}$ decays with D_{CP} decay modes. $D_{CP+} \rightarrow \pi^{+}\pi^{-}, K^{+}K^{-}$

ADS results

- Color suppress/doubly Cabibbo suppressed modes
- Combined significance (is there anything there?) >5 σ

Search for charm CP violation

$$A_{CP}(D^{0} \to \pi^{+}\pi^{-}) = \frac{\Gamma(D^{0} \to \pi^{+}\pi^{-}) - \Gamma(\overline{D}^{0} \to \pi^{+}\pi^{-})}{\Gamma(D^{0} \to \pi^{+}\pi^{-}) + \Gamma(\overline{D}^{0} \to \pi^{+}\pi^{-})}$$
Tagging the D⁰ with D*:
$$\begin{bmatrix} D^{*+} \to D^{0}\pi_{s}^{+} \\ D^{*-} \to \overline{D}^{0}\pi_{s}^{-} \end{bmatrix}$$
CP symmetric initial state (p-pbar) ensures charge symmetric production 215,000 D* \to D^{0}\pi with $D^{0} \to \pi\pi$.

1.6

2.0

1.9

Invariant $\pi^+\pi^-$ -mass [GeV/c²]

Kevin Pitts

B physics and discrete symmetries at the Tevatron

CP Asymmetry in $D^0 \rightarrow \pi^+ \pi^-$

In 5.94 fb⁻¹ result:

$$A_{CP}(D^0 \to \pi^+\pi^-) = (+0.22 \pm 0.24 \pm 0.11)\%$$

[%]

- Because of displaced track trigger, CDF measures a different combination of direct and indirect **CP** components
- D⁰ mixing parameters are small $(x\tau, y\tau < <1)$, then the integrated asymmetry at the first order can be written as: $A_{CP}(D^0 \rightarrow \pi^+ \pi^-) \approx a_{CP}^{dir} + \frac{\langle t \rangle}{\tau} a_{CP}^{ind}$
- Coming: *CP* asymmetry in $D^0 \rightarrow K^+K^-$

see Fabrizio Ruffini's talk on Friday

Topics Not Covered (or in the pipeline...)

- Lifetimes (e.g. $\Lambda_b \rightarrow J/\psi \Lambda$)
- More B_s
 - $\rightarrow B_s \rightarrow D_s D_s$
 - \rightarrow CPV in $B_s \rightarrow \mu D_s$
 - Other Bs modes
- Baryons
 - Properties
 - Excited states
 - $\rightarrow \Omega_b$
- **B**_c
 - Decays
 - properties
- $D^0 \rightarrow \mu \mu$
- Production
- X(3872), Y(4140), Z(4430)

Conclusion

 Tevatron continuing to produce a rich program in heavy flavor physics.

 \rightarrow Complementary to e⁺e⁻ machines and LHC experiments

- Many interesting results will benefit from more data.
 - Anticipate 9 fb⁻¹ per experiment for analysis by end of FY11
 - \rightarrow If run is extended, ultimate sample could be 15 fb⁻¹
- Results will continue beyond the end of the run

Where the Real Info Is...

T, C, P, CP symmetries, accidental symmetries 7 (Thursday afternoon)
 Paola Garosi

First ADS analysis of $B \rightarrow DK$ in hadron collisions

- T, C, P, CP symmetries, accidental symmetries 9 (Friday afternoon)
 Jouise Oakes
 Measurement of Bs mixing phase and observation of suppressed Bs decays at CDF
- T, C, P, CP symmetries, accidental symmetries 10 (Friday afternoon)
 Fabrizio Ruffini

Precision measurements of direct CP violation in $D^0 \rightarrow \pi\pi$ at CDF