CPV in B decays at Belle

Masaya Iwabuchi

Yonsei University

iwabuchi@post.kek.jp

December 9, 2010

M. Iwabuchi (Yonsei)

1

Belle and KEKB

- End of operation
- Luminosity

2 Experimental results for CPV at Belle

- Angles of Unitarity Triangle
- New Physics Search in CP Violation

Belle and KEKB

- End of operation
- Luminosity

Experimental results for CPV at Belle

- Angles of Unitarity Triangle
- New Physics Search in CP Violation

The operation of Belle and KEKB has ended *with great success* (on June 30, 2010)

KEKB control room

• Analysis is ongoing in parallel using the full data in Belle ..

Luminosity

Integrated Luminosity[fb-1]

Belle and KEKB

- End of operation
- Luminosity

2 Experimental results for CPV at Belle

- Angles of Unitarity Triangle
- New Physics Search in CP Violation

Unitarity Triangle

 A triangle can be drawn using an unitarity condition of the CKM matrix ;

$$V_{ud} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} = 0.$$

Precise measurements of these angles are the search for New Physics as well as the test of the Standard Model

- may reveal a new source of the *CP* violation

• Golden mode: $B^0 \rightarrow J/\psi K^0$

- Contribution from the penguin diagram is negligible
- Time-dependent asymmetry is:

 $\frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}) - \Gamma(B^{0}(\Delta t) \to f_{CP})}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}) + \Gamma(B^{0}(\Delta t) \to f_{CP})} = S_{CP} \sin(\Delta m \Delta t) + \mathcal{A}_{CP} \cos(\Delta m \Delta t)$

$$\left(S_{1} - S_{2}\right)$$

$$egin{cases} \mathcal{S}_{CP} = -\xi \sin(2\phi_1) \ \mathcal{A}_{CP} = 0 \end{cases}$$

CP-side B

• The flavor of the accompanying *B* is determined from the flavor information of the final state particles

 $\Delta t \simeq \Delta z / c \beta \gamma$

 μ

 ϕ_1 from $\mathsf{B}^0 o \mathsf{J}/\psi\mathsf{K}^0$

• 535M
$$B\overline{B}$$
 [PRD 98, 031802 (2007)]:
$$\begin{cases} N_{sig} = 7,484 \pm 87 \\ N_{sig} = 6,382 \pm 123 \end{cases} \text{ for } \begin{cases} B^0 \to J/\psi K_S \\ B^0 \to J/\psi K_L \end{cases}$$

 $\frac{\sin(2\phi_1) = 0.642 \pm 0.031 \pm 0.017}{(B^0 \to J/\psi K_S, J/\psi K_L \text{ combined})}$ \$\lefty\$ will be soon updated with the full data (772M \$BB\$)

- All cc resonances will be included with the reprocessed data (high eff.)
- Expected stat. error on $sin(2\phi_1) \sim 0.02$
- The size of stat. error on ϕ_1 is approaching to that of syst. error

- S_{CP} = sin(2φ₂), A_{CP} = 0 with the tree diagram (T) only
- $\mathcal{A}_{CP} \neq 0$ is possible due to a large penguin contribution $\sim T$
- An SU(2) isospin analysis is used to extract ϕ_2 from ϕ_2^{eff}

$$egin{aligned} \mathcal{S}_{CP} = & \sqrt{1 - \mathcal{A}_{CP}^2} \sin(2\phi_2 - 2\Delta\phi_2) \ = & \sqrt{1 - \mathcal{A}_{CP}^2} \sin(2\phi_2^{ ext{eff}}) \end{aligned}$$

An	nplitude for
$\vdash (\overline{A}^{-+}) \mid B^0$	$(\overline{B}{}^0) o \pi^+ \pi^-$
$B^{0}(\overline{A}^{00}) = B^{0}$	$(\overline{B}{}^0) ightarrow \pi^0 \pi^0$
$+0$ (\overline{A}^{-0}) B^+	$\pi(B^{-}) \to \pi^{+(-)}\pi^{0}$
$^{+0}$ (\overline{A}^{-0}) B^+	$\pi(B^-) o \pi^{+(-)}$

$$\tilde{A}^{ij} = e^{2\phi_3}\overline{A}^{ij}$$

$$\begin{array}{l} \mathcal{B}(B^0 \to \pi^+ \pi^-), \ \mathcal{B}(B^0 \to \pi^0 \pi^0), \ \mathcal{B}(B^+ \to \pi^+ \pi^0), \\ \mathcal{A}_{CP}(\pi^+ \pi^-), \ \mathcal{S}_{CP}(\pi^+ \pi^-), \ \mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0) \\ \text{are used for the determination of } \phi_2 \end{array}$$

CPV in B decays at Belle

$\overline{\phi_2}$ from $\mathsf{B}^0 o \pi\pi$

• ϕ_2 measurement using $B^0 \rightarrow \pi\pi$ 535M $B\overline{B}$ [PRL 98, 211801 (2007)] : $N_{\rm sig} = 1,464 \pm 65$

• (a) The difference in the heights of *B*-flavors is due to direct *CP* violation

- (b) $A_{CP} = +0.55 \pm 0.08 \pm 0.05 (5.5\sigma), S_{CP} = +0.61 \pm 0.10 \pm 0.04 (5.3\sigma)$
- (c) Scan ϕ_2 and construct χ^2 for the five amplitudes (A^{+0} , A^{+-} , A^{00} , \tilde{A}^{+-} , \tilde{A}^{00}): WA are used for $\mathcal{B}(\pi\pi)$ s, $\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0)$

$\phi_2 = (97 \pm 11)^\circ$: exclude $[11^\circ, 79^\circ]$ at 95% CL

ϕ_2 from $B^0 \rightarrow \rho \rho$

- ϕ_2 measurement using $B^0 \rightarrow \rho \rho$ 535M $B\overline{B}$ [PRD 76, 011104 (2007)] : $N_{\rm sig} = 576 \pm 53$
- Best environment for constraining ϕ_2 because of relatively small penguins
- Assuming 100% longitudinally polarized (\sim pure *CP*-even state)
- Isospin analysis : Use Belle results for $\mathcal{B}(B^0 \to \rho^0 \rho^0)$ (< 1.0 × 10⁻⁶ at 90% CL) in 2008, otherwise WA
 - before BaBar's $\mathcal{B}(\rho^+ \rho^0)$ update

ϕ_2 from $\mathsf{B}^0 o ho \pi$

- ϕ_2 measurement using $B^0 \to \rho \pi$ 449M $B\overline{B}$ [PRL 98, 221602 (2007)] : $N_{\rm sig} = 971 \pm 42$
- Dalitz plot-dependent differential decay rate is:

$$\frac{d\Gamma}{d\Delta t ds_+ ds_-} \sim e^{-|\Delta t|/\tau_{B^0}} \left\{ \left(|A_{3\pi}|^2 + |\overline{A}_{3\pi}|^2 \right) - q_{\text{tag}} \left(|A_{3\pi}|^2 - |\overline{A}_{3\pi}|^2 \right) \cos(\Delta m_d \Delta t) + q_{\text{tag}} 2 \text{Im} \left[\frac{q}{p} A_{3\pi}^* \overline{A}_{3\pi} \right] \sin(\Delta m_d \Delta t) \right\}$$

where $A_{3\pi}$ is the Dalitz plot-dependent complex amplitudes for $B^0(\overline{B}^0) \rightarrow \rho^+ \pi^-, \rho^- \pi^+, \rho^0 \pi^0$, with dynamical properties.

ϕ_3 from B⁺ \rightarrow DK⁺ (GGSZ)

 $| ilde{D}^0
angle=r_Be^{i heta}|\overline{D}^0
angle+|D^0
angle~~(heta=-\phi_3+ar{\delta_B}; ext{ strong phase difference})$

• D can be distinguished as D^0/\overline{D}^0 on the Dalitz plane

$$|A(m_{K_{S}\pi^{+}}^{2}, m_{K_{S}\pi^{-}}^{2})|^{2} = \left| \begin{bmatrix} D_{0}^{0} \rightarrow K_{S}\pi^{+}\pi^{-} & \overline{D}^{0} \rightarrow K_{S}\pi^{+}\pi^{-} \\ m_{K_{S}\pi^{-}}^{2} & m_{K_{S}\pi^{-}}^{2} \\ m_{K_{S}\pi^{+}}^{2} & m_{K_{S}\pi^{+}}^{2} \\ m_{K_{S}\pi^{+}}^{2} & m_{K_{S}\pi^{+}}^{2}$$

[A. Giri, Yu. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)]

ϕ_3 from B⁺ \rightarrow DK⁺ (GGSZ)

- Fit $x_{\pm} = r_B \cos(\delta_B \pm \phi_3)$, $y_{\pm} = r_B \sin(\delta_B \pm \phi_3)$ with a Dalitz plot model of *D* decay and other kinematical variables
- Model of D decay is determined using $D^{*+} \rightarrow D^0 \pi^+$, then used for the CP fit \rightarrow large model uncertainty for ϕ_3
- model-independent approach is now tested using CLEO-c data
 [A. Bondar, A. Poluektov, Eur. Phys. J. C 47, 347 (2006) and C 55, 51 (2008)]

• <u>New result from Belle for ADS mode</u> • $B^+ \to DK^+ (D \to K^-\pi^+)$ where $D = D^0$ or \overline{D}^0 $\begin{cases} B^+ \to D^0K^+ \ D^0 \to K^-\pi^+ \\ B^+ \to \overline{D}^0K^+ \ \overline{D}^0 \to K^-\pi^+ \end{cases}$

Either B or D decay is suppressed

• *CP* asymmetry and partial rate are the key for ϕ_3 extraction :

$$\mathcal{A}_{Dh} \equiv \frac{\mathcal{B}(B^{-} \to [K^{+}\pi^{-}]_{D}h^{-}) - \mathcal{B}(B^{+} \to [K^{-}\pi^{+}]_{D}h^{+})}{\mathcal{B}(B^{-} \to [K^{+}\pi^{-}]_{D}h^{-}) + \mathcal{B}(B^{+} \to [K^{-}\pi^{+}]_{D}h^{+})}$$

$$= 2r_{B}r_{D}\sin(\delta_{B} + \delta_{D})\sin(\phi_{3})/\mathcal{R}_{Dh}$$

$$\mathcal{R}_{Dh} \equiv \frac{\mathcal{B}(B^{-} \to [K^{+}\pi^{-}]_{D}h^{-}) + \mathcal{B}(B^{+} \to [K^{-}\pi^{+}]_{D}h^{+})}{\mathcal{B}(B^{-} \to [K^{-}\pi^{+}]_{D}h^{-}) + \mathcal{B}(B^{+} \to [K^{+}\pi^{-}]_{D}h^{+})}$$

$$= r_{B}^{2}r_{D}^{2}2r_{B}r_{D}\cos(\delta_{B} + \delta_{D})\cos(\phi_{3})$$

[D. Atwood, I. Dunietz and A. Soni, PRL 78, 3357 (1997)]

- First evidence of ADS $B^+ \rightarrow DK^+$ signal with a significance of 3.8σ with 772M $B\overline{B}$ (full data in Belle) $\mathcal{A}_{DK} = -0.39 \pm 0.26(\text{stat})^{+0.06}_{-0.04}(\text{syst})$ $\mathcal{R}_{DK} = [1.62 \pm 0.42(\text{stat})^{-0.19}_{-0.19}(\text{syst})] \times 10^{-2}$
- Discrimination between signal and background is improved using NeuroBayes (NB), a technique for multi-variate analysis
- 2D fit is performed using $\Delta E \equiv E_B E_{\text{beam}}$, and NB

• External information will be used to constrain ϕ_3 : r_D and δ_D may come from HFAG and CLEO-c

Constraints on Unitarity Triangle so far

No discrepancy from SM, still in consistency

New Physics Search in CP Violation

New physics search by ϕ_1^{eff} measurements in $b o sq\overline{q}$ modes

- deviation from $b \rightarrow c\overline{c}s$ indicates the physics beyond SM (prediction: $\delta \sin(2\phi_1) \sim \mathcal{O}(\%)$)

- New result from Belle for $B \rightarrow K_S K^+ K^-$ 657M $B\overline{B}$ [PRD 82, 073011 (2010)]
- Time-dependent Dalitz-plot analysis simultaneously determined ϕ_1^{eff} for ϕK_S , $f_0(980)K_S$ and other $K_SK^+K^-$

• A solution preferred from multiple solutions:

$$\begin{cases} \phi K_{5} : & \phi_{1}^{\text{eff}} = 32.2 \pm 9.0 \pm 1.4 \\ f_{0}(980)K_{5} : \phi_{1}^{\text{eff}} = 31.3 \pm 9.0 \pm 4.0 \end{cases}$$

Various approaches for $\phi_1^{\rm eff}$ still consistent with SM

$$\phi_1=(22\pm1)^\circ$$

M. Iwabuchi (Yonsei)

Belle and KEKB

- End of operation
- Luminosity

2 Experimental results for CPV at Belle

- Angles of Unitarity Triangle
- New Physics Search in CP Violation

3 Summary

Accuracies of CKM angles are improving day by day

- ϕ_1 Stat. error on ϕ_1 is approching to the syst. error
- $\phi_2 B \rightarrow \rho \rho$ mode currently gives tightest constraint on ϕ_2 , but $B \rightarrow \rho \pi$ mode can constrain ϕ_2 without ambiguity
- ϕ_3 Error on ϕ_3 from the Dalitz plot analysis has started to be saturated by the model error
- New Physics search through the CPV in *B* decays achieved many results, but still consistent with SM so far

Need to improve stat. errors for further inspection of CPV

- Belle will soon update important analyses with the full data
- Belle II will further extend our knowledge on CPV in near future