U boson searches at KLOE(-2)

S. Giovannella (LNF-INFN) on behalf of the KLOE and KLOE-2 Collaborations

DISCRETE 2010, Rome 6-11 December 2010

S. Giovannella – DISCRETE 2010 - Rome, 6-11 Dec. 2010

Low energy dark force

Several puzzling astrophysical results (DAMA, PAMELA, INTEGRAL...) could be explained with the existence of a new light vector boson (U/A'...), mediator of a non standard gauge interaction, weakly coupled to SM particles via a kinetic mixing mechanism: $\varepsilon F_{\mu\nu}F_d^{\mu\nu}$

✓ Dark gauge boson U mixes with photon e^{-} γ^{*} U e^{-} U

Coupling constant ε of electric charge to U expected to be $\leq 10^{-3}$

See talk by N. Weiner Tuesday, plenary session

✓ Mass range: 1 MeV – few GeV

✓ U production allowed in charged particle scattering

✓ U decays through photon mixing, i.e. $e^+e^-/\mu^+\mu^-...$

2

Existing constraints on \varepsilon-m_U plane

The KLOE Experiment *a* DAΦNE

More details on S.Miscetti's talk (parallel, yesterday afternoon)

KLOE data taking ended on March 2006
> 2.5 fb⁻¹ on tape @ √s = M_φ (8×10⁹ φ)
> ~10 pb⁻¹ @ 1010,1018,1023,1030 MeV
> 250 pb⁻¹ @ 1000 MeV

First KLOE-2 run will start mid-January: ≈5 fb⁻¹ / 1 year Overall run: ×10 increase on integrated luminosity (20 fb⁻¹)

Search for dark forces *(a)* KLOE: $\phi \rightarrow \eta U$

Meson having radiative decay to one photon can decay to a U boson with $BR(X \rightarrow YU) \sim \epsilon^2 \times |FF_{XY\gamma}|^2 \times BR(X \rightarrow Y\gamma)$

 $\sigma(\phi \rightarrow \eta U) \sim 40 \text{ fb } \text{for FF}_{\phi\eta} = 1, \varepsilon = 10^{-3}$

Irreducible background: ϕ **Dalitz decay** $\phi \rightarrow \eta \gamma^* \rightarrow \eta l^+ l^- (\sigma = 0.7 \text{ nb})$

-		[1			I	
	$X \to YU$	n_X	$m_X - m_Y \ ({\rm MeV})$	$\mathrm{BR}(X \to Y + \gamma)$	$\mathrm{BR}(X \to Y + \ell^+ \ell^-)$	$\epsilon \leq$	
	$\eta \to \gamma U$	$n_\eta \sim 10^7$	547	$2 \times 39.8\%$	6×10^{-4}	2×10^{-3}	
	$\omega \to \pi^0 U$	$n_\omega \sim 10^7$	648	8.9%	$7.7 imes 10^{-4}$	5×10^{-3}	
1	$\phi \rightarrow \eta U$	$n_{\phi} \sim 10^{10}$	472	1.3%	1.15×10^{-4}	1×10^{-3}	All KLOE stat.
	$K_I^0 \to \gamma U$	$n_{K^0} \sim 10^{11}$	497	$2 \times (5.5 \times 10^{-4})$	9.5×10^{-6}	2×10^{-3}	All decay chains
	$K^+ \rightarrow \pi^+ II$	RK1 0 10 ¹⁰	354	,	2.88×10^{-7}	7×10^{-3}	
	K^+ L^+ U	1010	202	6.2 × 10-3	2.00×10^{-84}	1 - 10	
	$K^+ \rightarrow \mu^+ \nu U$	$n_{K^+} \sim 10^{-10}$	392	6.2 × 10	7 × 10	2 × 10	
-	$K^+ \to e^+ \nu U$	$n_{K^+} \sim 10^{10}$	496	1.5×10^{-5}	2.5×10^{-8}	7×10^{-3}	

[M.Reece and L.T.Wang, JHEP 0907:051 (2009)]

Selected decay chain: $U \rightarrow e^+e^- + \eta \rightarrow \pi^+\pi^-\pi^0$ (BR = 22.7%) prel. results $\eta \rightarrow \gamma\gamma$ (BR = 39.3%) in progress

The $\phi \rightarrow \eta e^+ e^-, \eta \rightarrow \pi^+ \pi^- \pi^0$, decay

Analysis performed on **739 pb⁻¹** (~0.4 of the total lumin.)

- ➤ 4 tracks in a cylinder around IP + 2 photon candidates
- Set $\pi^+\pi^-\gamma\gamma$ match to the η mass using the pion hypothesis for tracks. Other two tracks assigned to e^+/e^-

$$> 495 < M_{\pi\pi\gamma\gamma} < 600 \text{ MeV}$$

 $70 < M_{\gamma\gamma} < 200 \text{ MeV}$
 $535 < M_{\text{miss}}(ee) < 560 \text{ MeV}$

Background rejection: photon conversions

Photon conversions on Beam Pipe/DC Wall DCW rejected by tracking back to BP/DCW surfaces the two e^+ , e^- candidates and BP reconstructing the e^+e^- invariant mass $(M_{\rho\rho})$ and the distance between the two particles $(D_{\rho\rho})$. Both quantities are True vertex small if coming from photon conversion **Rec.** vertex D_{ee} (cm) Data 1000^{3} 0 ò Mee (MeV) M_{ee} (MeV) M_{ee} (MeV)

Background rejection: π -enriched events

 $\phi \rightarrow$ KKbar and $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ events surviving analysis cuts have more than two pions in the final state. They can be rejected using Time-of-Flight (ToF) to the calorimeter when an EMC cluster is connected to the track

DT = T_{track} - $T_{cluster}$ variable evaluated in both electron (**D**T_e) and pion (**D**T_{π}) hypotheses

S. Giovannella – DISCRETE 2010 - Rome, 6-11 Dec. 2010

π

Background reduction on data

Fit to the M_{ee} shape

Decay parametrization from Landsberg $85 + F(q^2)$ approximation from Achasov, Kozhevnikov, Sov. J. Nucl. Phys. 55 (1992) 449

Exclusion plot for $\phi \rightarrow \eta U, \eta \rightarrow \pi^+ \pi^- \pi^0 \chi^{\epsilon}$

- ♦ $\phi \rightarrow \eta U$ MC sample [M.Reece and L.T.Wang, JHEP 0907:051 (2009)]
 divided in sub-samples of 1 MeV in M_{ee}(true)
- ★ Expected background ($\phi \rightarrow \eta e^+ e^-$) shape from our fit to M_{ee} distribution
- For each M_{ee}(true) bin, signal hypothesis excluded @ 95% C.L. using CL_S technique
- Consistent results with Bayesian approach

Exclusion plot for *\varepsilon*

From number of events to ε using:

$$\frac{\Gamma(\phi \to \eta U)}{\Gamma(\phi \to \eta \gamma)} = \varepsilon^2 |F_{\phi\eta\gamma}(m_U^2)|^2 \frac{\lambda^{3/2}(m_{\phi}^2, m_{\eta}^2, m_U^2)}{\lambda^{3/2}(m_{\phi}^2, m_{\eta}^2, 0)}$$

[M.Reece and L.T.Wang, JHEP 0907:051 (2009)]

RELIMINARY

$$N(\varphi \to \eta U; U \to e^+ e^-; \eta \to \pi^+ \pi^- \pi^0) = N(\varphi \to \eta U) \times \left[1 + \frac{\Gamma(U \to \mu^+ \mu^-)}{\Gamma(U \to e^+ e^-)}\right]^{-1} \times BR(\eta \to \pi^+ \pi^- \pi^0)$$

The $\phi \rightarrow \eta e^+ e^-, \eta \rightarrow \gamma \gamma$, decay

Most severe background from double radiative Bhabha events is strongly reduced by looking at the angle between the charged tracks and the photons

The $\phi \rightarrow \eta e^+ e^-, \eta \rightarrow \gamma \gamma$, decay

Residual non-Bhabha background can be rejected by using further electron identification based on E/P for both tracks

S. Giovannella – DISCRETE 2010 - Rome, 6-11 Dec. 2010

The $\phi \rightarrow \eta e^+ e^-, \eta \rightarrow \gamma \gamma$, decay

M_{ee} spectrum after all cuts:

***** Evidence for $\phi \rightarrow \eta e^+ e^-$, $\eta \rightarrow \gamma \gamma$, Dalitz decay in the low M_{ee} region

RELIMINARY

 Still some residual background contamination at high M_{ee} values

Search for U-boson @ KLOE: higgs'-strahlung

$$e^+e^- \rightarrow Uh'$$
 (dominant if $m_h < m_U$
 $\alpha \sim 20 f h' (\alpha') (\epsilon^2) 10^2 GeV^2$

[B. Batell, M. Pospelov, A. Ritz: PRD79 (2009) 115008]

α **∬ 10**⁻⁴)

S

$$m_h > m_U : h \to UU \to 4l$$

$$\begin{array}{c} m_{h} < m_{U} : h \rightarrow \text{``invisible''} & \longrightarrow & \text{Studied} @ \text{KLOE} \\ U \rightarrow ll & & \varepsilon = 10^{-3} \\ \alpha' = \alpha \\ m_{u} >> m_{h} & & \sigma_{hU} \approx 20 \text{ fb} \\ \tau_{h} > 10 \ \mu \text{s} & \text{increasing with} \\ \text{decreasing } \varepsilon \end{array}$$

MC signal according to: B. Batell, M. Pospelov, A. Ritz: PRD79 (2009) 115008 $\checkmark U \rightarrow e^+e^-$ not selected by our Event Classification algorithms $\checkmark U \rightarrow \mu^+\mu^-$ selected with high efficiency for m_h<300 MeV \longrightarrow Selected channel

A signal would show up as a sharp 2D peak with ≈ 10 events or less

but L~O(fb⁻¹) needed

✓ Possibility for a long KLOE-2 run at \sqrt{s} =1 GeV under discussion

Summary/Outlook

✤ First measurements for U boson searches started at KLOE

$\bigstar \phi \rightarrow \eta \mathbf{U}, \mathbf{U} \rightarrow e^+ e^-$

> Preliminary result with 700 pb⁻¹, $\eta \rightarrow \pi^+ \pi^- \pi^0$ channel: $\varepsilon < 3 \times 10^{-3}$ @ 95% C.L. for 25<M_{ee}<425 MeV

Systematics not yet included. Another factor 2.5 of data available

> The 20 fb⁻¹ expected @ KLOE-2 will allow to reach 1.3×10^{-3}

 $\succ \eta \rightarrow \gamma \gamma$ channel under study to increase statistics

- ♦ Higgs'-strahlung: $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- +$ "invisible"
 - → Hot region with difficult $\phi \rightarrow K^+K^-$ background. We are studying how to face it.
 - ➤ KLOE-2 plans: possibility for running at 1 GeV?
 dedicated streaming for U→ e^+e^- channel

$\phi \rightarrow \eta e^+ e^-$: analysis efficiency vs M_{ee}

U.L. evaluation: the CL_S technique

Reference: T. Junk, Nucl. Instr. Meth. A 434 (1999) 435.

$$X = \prod_{i=i-2}^{i+2} X_i = \frac{\prod_{i=i-2}^{i+2} \frac{\exp[-(S_i + B_i)] \times (S_i + B_i)^{N_i}}{N_i!}}{\prod_{i=i-2}^{i+2} \frac{\exp[-(B_i)] \times (B_i)^{N_i}}{N_i!}}{N_i!}$$

$$N_i : \text{number of observed events in } i^{th} \text{ bin } B_i : \text{number of expected } \phi \rightarrow \eta e^+ e^-$$
events from fit to M_{ee} shape
$$S_i : N_{sig} \times f_i \quad [f_i = \text{fraction of DF signal} \\ events \text{ in } i^{th} \text{ bin }]$$

$$CL_{S+B} = P_{S+B}(X \le X_{obs}) = \sum_{X(\{N_i\}) \le X(\{N_i\})} \prod_{i=i-2}^{i+2} \frac{\exp[-(S_i + B_i)] \times (S_i + B_i)^{N_i}}{N_i!}$$

$$CL_{S} = CL_{S+B} / CL_{B}$$

CL_S evaluated using TLimit class in ROOT

- ♦ For each sub-sample evaluate CL_S for $0 \le S \le S(MAX)$ using 5 rec. bins
- ***** Signal hypothesis excluded *@* 95% C.L. when $CL_S < 0.05$

U.L. evaluation: Bayesian approach

- * For each M_{ee} (true) bin, U.L. evaluated with Bayesian approach with:

$$Likelihood(S) = \prod_{i=i-2}^{i+2} \frac{\exp[-(S_i + B_i)] \times (S_i + B_i)^{N_i}}{N_i!}$$

Sum over five rec. bins around M_{ee}(true)

- N_i : number of observed events in i^{th} bin
- B_i : number of expected $\phi \rightarrow \eta e^+ e^-$ events [from fit to M_{ee} shape, corrected for $\varepsilon_{ana}(M_{ee})$]
- $S_i : N_{sig} \times f_i$ [f_i = fraction of DF signal events in i^{th} bin]

Prior p.d.f.:
$$\pi(S) = \begin{cases} 0[S < 0] \\ 1[S \ge 0] \end{cases}$$

Upper limit S_{up} @ C.L. 1- α from: $1 - \alpha = \frac{\int_{-\infty}^{S_{up}} L(S) \times \pi(S) dS}{\int_{-\infty}^{S} L(S) \times \pi(S) dS}$

Higgs'-strahlung: signal efficiency

All u masses, m_h=100 MeV

cut	ε (hu, u→µµ)
ppg tag	80 %
barrel	65%
$p_{1,2} < 460$	58%
$p_1 + p_2 > 450$	58%
veto cal	53%
$p_{\rm miss} > 40$	53%
vtx cut	35%
PID (e/μ)	30%
PID (π/μ)	~ 20%

Apply π/μ ID only when kinematics is compatible with a $\pi^+ \pi^- \pi^0$ event: $|m_{recoil} - m_{\pi 0}| < 20$ MeV

Efficiencies: $\sim 15\% \div 40\%$