Status and prospects for the KLOE-2 experiment

S. Miscetti (LNF-INFN) on behalf of the KLOE-2 collaboration

Discrete 2010, 6-11 Dec 2010, Roma

DA Φ **NE:** the Frascati ϕ -factory

- e^+e^- collider (a) $\sqrt{s} = M_{\phi} = 1019.4$ MeV
- 2 interaction regions
- Separate $e^+ e^-$ rings
- 105+105 bunches, 2.7 ns bunch spacing
- $I_{peak}^- \sim 2.4 \text{ A}$ $I_{peak}^+ \sim 1.5 \text{ A}$
- Injection during data taking
- Crossing angle: 2×12.5 mrad

***** Running period: 1999-2006

- Best performances:
 - $L_{\text{peak}} = 1.4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - $\succ \int \mathbf{L} dt = 8.5 \text{ pb}^{-1}/\text{day}$

For KLOE experiment

Data taking ended on March 2006
> 2.5 fb⁻¹ on tape @ √s = M_φ (8×10⁹ φ)
> ~10 pb⁻¹ @ 1010, 1018, 1023, 1030 MeV
> 250 pb⁻¹ @ 1000 MeV

KLOE

DAΦNE upgrade: the Crab waist

DAΦNE upgrade: Siddharta Luminosity

- > 10 pb⁻¹ delivered daily during best run period (2.8 fb-1 total)
- Siddharta detector could not stand the rate during injection
- ➤ 1 pb⁻¹/hour obtained with faster top-up operations O(20 pb-1) /day achievable → 0.5 fb-1/month

KLOE & KLOE-2 *(a)* **DAΦNE**

Drift chamber

- **♦** Gas mixture: **90% He** + **10% C**₄**H**₁₀
- $\delta p_t / p_t < 0.4\% \ (\theta > 45^\circ)$

 $\diamond \sigma_{xy} \approx 150 \ \mu m$; $\sigma_z \approx 2 \ mm$

Electromagnetic calorimeter

- $\boldsymbol{\bigstar}$ lead/scintillating fibers
- ✤ 98% solid angle coverage

$$\bigstar \sigma_{\rm E} / \rm E = 5.7\% / \sqrt{(E(GeV))}$$

- $\sigma_t = 57 \text{ ps} / \sqrt{(E(GeV)) \oplus 100 \text{ ps}}$
- PID capabilities

The road towards KLOE-2: two steps upgrade

1) e[±] taggers for γγ physics (already installed)

 1 year of running → O(5 fb-1).
 2) major upgrade (spring 2012)
 inner tracker + new small angle calorimeters
 ×10 increase on integrated Luminosity O(20 fb⁻¹)

KLOE-2 upgrades: the yy taggers

1st phase now :

Technical Design Report LNF - 10/14(P)

- LET & HET
- ✓ LYSO+SiPMs & Scint+PMTs
- Lepton taggers for γγ-physics

KLOE-2 upgrades: the second phase

KLOE

CCALT

✓ LYSO + APD (SiPM)

✓ Increase acceptance for γ's from IP
 (21°→10°) –

INNER TRACKER

Technical Design Report - arXiv:1002.2572

- ✓ 4 layers of cylindrical triple GEM
- ✓ Better vertex reconstruction near IP
- ✓ Larger acceptance for low pt tracks

QCALT

- ✓ tiles + WLS/SiPM
- \checkmark quadrupoles coverage for K_L decays

Physics at KLOE/KLOE-2

- Kaon physics: $|V_{us}|$ and CKM unitarity, CP and CPT violation, rare decays, OF χ PT tests, quantum mechanics tests
- $\bullet \varphi$ radiative decays: pseudoscalar and scalar mesons
- Search for a Dark Gauge sector
- Hadron production in yy collision
- Had cross-section via ISR $[e^+e^- \rightarrow \gamma \ (\pi^+\pi^-)]$ hadronic corrections to $(g-2)_{\mu}$

KLOE-2 physics program:

[G.Amelino-Camelia et al., EPJC 68, 619 (2010).]

DAΦNE upgrade for KLOE-2 (2010)

Machine layout of IR1 modified to compensate KLOE B-field.
New IR1 inserted in KLOE (June 2010) after detector roll-in
LINAC upgraded + general maintenance performed
Wigglers and collimators upgraded
Improved horizontal feedback with new kickers
Stripline electrods for electron cloud clearing

Cryogenic system refurbished

(4 compensators vs 2 in old DAFNE). • KLOE-2 cryostat problems @ end of August:

- 2 months operation to recover it.
- Optics w/o B-Field tested in September-October
- Cryostat cooled succesfully @ Nov 15.
- Operations with B-Field ON started Nov.17

DAΦNE status: today

- □ In two weeks, e- (e+) currents up to 800 (600) A → beam conditioning is being carried out to improve vacuum
- □ Background level in KLOE still too high (>2 MHz on EMC) → working on Collimators
- □ Optics optimization performed with both beams
- Beam Beam vertical scan performed Nov the 28th

Optimization of beam beam interaction, luminosity and background reduction in next weeks

Start of real collisions expected for middle of January 2011

KLOE-2

KLOE-2 status

- ◆ EMC+DC OK → Calibration done with CR
 ◆ DAQ + slow control tested with long automatic running procedures
- ✤ DC in standby during this commissioning run

KLOE-2: physics shopping list for Step-0

 \Rightarrow γγ physics : measurement of the tagger acceptance vs Q² π⁰ width, Meson transition form factor

 $\diamond \phi \rightarrow \eta e^+ e^-$: measurement of the form factor $\diamond \eta' \rightarrow \eta \pi^+ \pi^-$: measurement of the M_{ππ} distribution $\diamond \phi \rightarrow Ks Ks \gamma$: improve limit, first evidence of the decay $\diamond Exclusion$ plot for dark forces U(1), h'

$$\begin{array}{l} - e^+ e^- \rightarrow U\gamma \rightarrow l^+ l^- \gamma, \\ - e^+ e^- \rightarrow \eta U \rightarrow \eta \ l^+ l^- \\ - e^+ e^- \rightarrow h \ \gamma \rightarrow X_{Miss} \ l^+ l^- \end{array}$$

 $\diamond K_{\rm S} \rightarrow \pi^0 \pi^0 \pi^0$ $\diamond K_{\rm S} K_{\rm S} \rightarrow \pi^0 \pi^0 \pi^+ \pi^-$ Measurement of Im(ε'/ε)

Search for $\phi \rightarrow K^0 K^0 \gamma$ events

- ♦ Proceeds as: $\phi \rightarrow [f_0(980) + a_0(980)] \gamma \rightarrow K^0 K^0$ → Never been observed
- ♦ Final State: $K_S K_S \gamma \rightarrow \pi^+ \pi^- \pi^+ \pi^- \gamma$ Clean topology, 24% BR reduction
- ♦ Selection cuts optimized on MC (bckg: $K_{S}K_{L}(\gamma)$, $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}(\gamma)$)
- 2.18 fb⁻¹ data @ M_φ: PLB 679 (2009) 10
 5 EVENTS IN DATA
 2.5 + 0.7 BCKG EVENTS (MC)

$$BR(\phi \rightarrow K^0 \overline{K}^0 \gamma) < 1.9 \times 10^{-8} @ 90\% \text{ C.L}$$

Consistent with KLOE couplings from $\phi \rightarrow \pi \pi \gamma$, $\phi \rightarrow \eta \pi \gamma$ in the K-Loop model

♦Same analysis ⓐ 10 fb-1 : BR(ϕ →K_SK_S γ) < 1×10⁻⁸

> Other theoretical predictions can be ruled out

★ With IT: BR($\phi \rightarrow K_S K_S \gamma$) < 0.5×10⁻⁸ → KLOE allowed region covered

→First observation possible

S. Miscetti – Discrete 2010 – December 9 2010

K∐ (O)F.

$\phi \rightarrow \eta$ e+e- events: searching for U

Puzzling astrophysical results (DAMA, PAMELA, INTEGRAL...) can be explained with a new light "dark" gauge boson (U/A'...) weakly coupled to SM particles via a kinetic mixing mechanism: $\varepsilon F_{\mu\nu}F_d^{\mu\nu}$

Most advanced search in KLOE by means of $e^+ e^- \rightarrow \eta U \rightarrow \eta e^+ e^-$

For more details \rightarrow see "S.Giovannella" talk on Friday afternoon session

Kaons: search for Ks \rightarrow 3 π^0 events

SM prediction:

CP violation in Ks system

- ▶ Best limit from KLOE with 400 pb⁻¹
 - based on 30 million tags
 - \rightarrow 2 candidates, 3.13 exp Bkg
 - (Cluster splits + fake tags)
- ➤ Analysis in progress with x 4 statistics
 - Fake reduction improvement > 30
 - Split rejection improvement > 20
- Feasible to bring UL ~ 10^{-8} with O(5 fb-1)

 $BR(K_S \rightarrow 3\pi^0) = 1.9 \cdot 10^{-9}$

 $BR(K_S \rightarrow 3\pi^0) \le 1.4 \cdot 10^{-5}$

 $BR(K_S \rightarrow 3\pi^0) < 7.4 \cdot 10^{-7}$

 $BR(K_s \rightarrow 3\pi^0) \le 1.2 \cdot 10^{-7}$

- Ks tag by KL interaction on EMC
- Six photon events
- Discriminant analysis

KLOE: yy physics w/o tagger

• $M(\pi^0\pi^0)$ @ 1000 MeV (200 pb⁻¹), high statistics, high bkg • Systematic error band: normalization, efficiency, ana cuts

• Study of single " η " production with the same sample In the $\pi^+\pi^-\pi^0$ final state.

• Clean signal observed in Pl and Mmiss variables

 $\sigma (e^+e^- \rightarrow e^+e^-\eta, \sqrt{s=1 \text{ GeV}}) = (50 \pm 2_{\text{stat}} \pm 6_{\text{syst}}) \text{ pb}$

KLOE-2

KLOE-2: γγ taggers (LET)

LET should tag e+e- of 160-230 MeV

- No correlation btw position momentum due to deflection of off-axis particles from QD0
 Two calorimeters with 20 LYSO crystals/side
- readout by 3x3 mm² Hamamatsu SIPM
- SICCAS crystals (500 pe/MeV, 5% LRU)

Assembling the calorimeters

♦ Let inserted the fourth of June. Cables routed.
♦ FEE boards ready, HV driver ok, DAQ OK
♦ Calibration in progress → first CR data acquired

Testing and closing

LET in place

KLOE-2: γγ taggers (HET)

HET should tag e+ e- > 400 MeV

♦ High correlation between position and momentum due to the bending of first Dipole
♦ 1 mm resolution $\rightarrow 0.6$ MeV

Detector will be inserted in Roman Pots already installed in DAFNE Beam-Pipe

Two scintillator hodoscopes (e⁺/e⁻): 28 plastic scint 3x5x6 mm³ 2 plastic scint 3x120x6 mm³

- Total : 60 Channels for the 2 HET -Scintillators + I.guides + PM ok - PM's holder under realization
- final detector + FEE/DAQ march 2011

Now testing "machine" environment (Temperature, Rate) with "test detectors/sensors" inside nose of Roman Pots.

γγ tagger: usage @ 5 fb-1

Learn to use the taggers \rightarrow acceptance/bkg

* If single tag enough for bkg reduction O(30%) acceptance on $\pi\pi$ final state

✤ If double tag needed O(10%)

***** HET•HET tags enough for determination of π^0 -width

***** HET•HET+LET•KLOE OK for slope of π/η transition form factors

$\gamma\gamma$ taggers: meson transition form factors

Upgrades: The QCALT calorimeter

QCALT : veto photons from KL New IR1 \rightarrow new veto calorimeter on Inner Quads \diamond Dodecagonal structure of 5 layers sampling calorimeter (3.5 mm W+5 m thick scintillating tiles), ~ 5 X₀ \diamond WLS + SIPM readout (1.2 mm ϕ IRST/FBK)

♦ high granularity (5x8 cm² tiles) to get ~ 1.5 cm resolution \rightarrow 2000 readout channels

 \Rightarrow High L.Y. (20 p.e./MIP) /good timing (1 ns)

Construction starts on 2011 \rightarrow completion expected end 2011

S. Miscetti – Discrete 2010 – December 9 2010

Upgrades: The CCALT calorimeter

CCALT (Crystal Calorimeter with Timing)

♦ Dodecagonal structure of ~ 10 cm long LYSO crystals → increase coverage for low energy photons down to 10 degrees (i.e. just in fron of first Quad (QD0).
♦ Large L.Y. with APD's, Timing resolution of 100 ps @ 20 MeV
♦ Final readout by means of LA SIPM (6x6 mm2 Hamamatsu or 4x4 mm2 IRST) to avoid heat dissipation in a critical region → time res of ~ 300 ps @ 30 MeV

CCALT: Search for rare Ks, η decays

CB@AGS: BR = ($22.1 \pm 2.4 \pm 4.7$) × 10^{-5} PRC 78 (2008) 015206 ~ 500 signal events CB@MAMI-B: BR = ($22.5 \pm 4.6 \pm 1.7$) × 10^{-5} Preliminary, arXiv:0910.1331 ~ 150 signal events

Upgrades: The Inner Tracker

The IT @ CGEM is a low-mass, fully cylindrical and dead-zone-free GEM based detector: no support frames are required inside the active area

IT: Improve vertex reconstruction of K_s , η , η' rare decays and K_s - K_L interference measurements :

- $\sigma_{r\phi}$ ~ 200 μm and σ_z ~ 500μm
- Iow material budget:<2%X₀
- 5 kHz/cm² rate capability

♦ 4 CGEM layers with radii from 13 to 23 cm from IP and before DC Inner Wall

- ♦ 700 mm active length
- XV strips-pads readout (40° stereo angle)
- ♦ 1.5% X₀ total radiation length in the active region with Carbon Fiber supports

$K_s \rightarrow \pi \pi$ vtx resolution will improve of about a factor 3 from present 6 mm

IT: Implication on interferometry

- Kaon pairs @ $\phi\,$ are produced in a pure quantum state (Jpc = 1-)

- Interferometry studies can be carried out so to perform relevant QM, EPR, CPT and Lorentz violation tests.

For a full report on KLOE/KLOE-2 interferometry studies \rightarrow see "A.DeSantis" talk on Tuesday afternoon session

IT: Detector Construction

- R&D phase completed
- Large Area GEM exist and work
- Mechanics + FEE OK
- Tooling completed
- Construction of Layer 2 in progress

Vertical Insertion System

IT: overall status

- \ast Detector mechanics, assembly and quality control tools ready \checkmark
- ★ Test beam @ CERN-PS with Large Area Planar Prototype and final FEE + DAQ ✓
- **Start of Layer #2 construction** delayed due to:
 - TS-DEM CERN Lab errors in anode and GEM construction (GEMs delivered in October) → GEMS now OK
 - 2. final layout of anode readout in progress
- FEE final production (700 chips) Starting
- ***** Completion of Clean Room for IT construction :
 - Delivery expected by March

ONE YEAR of construction \rightarrow IT expected to be fully instrumented in Spring 2012

Upgrades: integration

S. Miscetti – Discrete 2010 – December 9 2010

Prospects for \sigma(had) measurement

In progress: $|\mathbf{F}_{\pi}|^2$ from the ratio $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)/\sigma(e^+e^- \rightarrow \mu^+\mu^-\gamma)$

$$\beta_{\pi} = \frac{d\sigma_{\mu\mu\gamma}}{ds}$$

- Many factors cancel in the ratio:
 - radiator function
 - luminosity from Bhabhas
 - vacuum polarization

δa, HLO=5.3=3.3(√s<1GeV) ⊕3.9(1< √s<2GeV) ⊕1.2(√s>2GeV)

• **KLOE-2**:

 $\delta \sigma \sim 0.4\%$ (vs 0.7% now) for $\sqrt{s} < 1$ GeV (*a*) 1 GeV, 2 fb⁻¹ $\delta \sigma \sim 2\%$ (vs 6% now) for $1 < \sqrt{s} < 2$ GeV with energy scan (if DA Φ NE energy $\rightarrow 2 - 2.5$ GeV)

Conclusions/plans

- Since November the 15th DAFNE machine has started commissioning with KLOE-2 installed and fully operational.
 - Currents of 800 (600) mA reached for both beams.
 - Conditioning of machine & bkg reduction in progress.
 - First collisions @ low current tried \rightarrow real collisions middle of January
 - $\gamma\gamma$ taggers installed
- > One year of continuous running @ Φ planned to get O(5 fb-1) and perform the first set of physics measurement.
- ➢ Request of O(1 fb-1) @ 1000 MeV being proposed to complete σ (had), γγ-physics measurement and searches of U, h' boson.
- > Upgrades for phase two are under construction:
 - -- IT will start integrating first layer next spring
 - -- QCAL construction is starting now
 - -- CCAL mechanical drawings exist

All upgrades expected completion \rightarrow spring 2012

Additional material

IT: Implication on interferometry

Most of the interesting QM, CPT and QM, CPT and EPR parameters can be improved @ KLOE-2 due: i) to larger samples ii) to IT resolution ~ x 4 stat. increase

Decoherence and CPT violation

Modified Liouville - von Neumann equation for the density matrix of the kaon system:

$$\dot{\rho}(t) = -\frac{iH\rho + i\rho H^{+}}{QM} + L(\rho) + \frac{i\rho H^{+}}{decoherence:}$$
where the state is a state state in the state is a state in the state in the state is a state in the state in the state is a state in the state in the state is a state in the state in

Possible decoherence due quantum gravity effects:

Black hole information loss paradox => Possible decoherence near a black hole. Hawking [1] suggested that at a microscopic level, in a quantum gravity picture, nontrivial space-time fluctuations (generically <u>space-time foam</u>) could give rise to decoherence effects, which would necessarily entail a violation of CPT [2].

J. Ellis et al.[3-6] => model of decoherence for neutral kaons => 3 new CPTV param. α, β, γ :

$$L(\rho) = L(\rho; \alpha, \beta, \gamma)$$

 $\alpha, \gamma > 0$, $\alpha\gamma > \beta^2$
At most: $\alpha, \beta, \gamma = O\left(\frac{M_K^2}{M_{PLANCK}}\right) \approx 2 \times 10^{-20} \text{ GeV}$

[1] Hawking, Comm.Math.Phys.87 (1982) 395; [2] Wald, PR D21 (1980) 2742; [3] Ellis et. al, NP B241 (1984) 381;
 PRD53 (1996)3846 [4] Huet, Peskin, NP B434 (1995) 3; [5] Benatti, Floreanini, NPB511 (1998) 550 [6]
 Bernabeu, Ellis, Mavromatos, Nanopoulos, Papavassiliou: Handbook on kaon interferometry [hep-ph/0607322]

IT implication on QM

Many of the interesting QM, EPR, CPT parameters can be improved (a) KLOE-2 due to larger samples. IT resolution ~ x 4 stat. increase

Mode	Test of	Param.	Present best published	KLOE-2
			measurement	L=25 fb ⁻¹
π⁺π⁻ π⁺π⁻	QM	ζ	$(0.1 \pm 1.0) \times 10^{-6}$	$\pm 0.1 \times 10^{-6}$
π ⁺ π ⁻ π ⁺ π ⁻	QM	ξ _{sl}	$(0.3 \pm 1.9) \times 10^{-2}$	$\pm 0.2 \times 10^{-2}$
n+n n+n-	CPT & QM	α	$(-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$	± 2 × 10 ⁻¹⁷ GeV
π+π π+π	CPT & QM	β	$(2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$	± 0.2 × 10 ⁻¹⁹ GeV
π+π-π+π-	CPT & QM	Ŷ	$(1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$	± 0.3 × 10 ⁻²¹ GeV
			compl. pos. hyp.	compl. pos. hyp.
			$(0.7 \pm 1.2) \times 10^{-21} \text{ GeV}$	± 0.2 × 10 ⁻²¹ GeV
π ⁺ π ⁻ π ⁺ π ⁻	CPT & EPR corr.	Re(ω)	$(-1.6 \pm 2.6) \times 10^{-4}$	$\pm 3 \times 10^{-5}$
π⁺π⁻ π⁺π⁻	CPT & EPR corr.	Im(ω)	$(-1.7 \pm 3.4) \times 10^{-4}$	$\pm 4 \times 10^{-5}$
K _{s,L} →πev	CPT & Lorentz	Δa ₀	$[(0.4 \pm 1.8) \times 10^{-17} \text{ GeV}]$	± 2 × 10 ⁻¹⁸ GeV
n+n- n+n-	CPT & Lorentz	Δaz	$[(2.4 \pm 9.7) \times 10^{-18} \text{ GeV}]$	± 1 × 10 ⁻¹⁸ GeV
π ⁺ π ⁻ πev	CPT & Lorentz	Δa _{x,y}	[<10 ⁻²¹ GeV]	± 6 × 10 ⁻¹⁹ GeV

S. Miscetti – Discrete 2010 – December 9 2010

Me	od e	Test of	Param.	Present best published measurement	KLOE-2
				meugurement	L=25 ID ·
Ks⊣	•πe∨	СР, СРТ	As	(1.5 ± 11) × 10 ⁻³	$\pm 1 \times 10^{-3}$
π+π-	πεν	СР, СРТ	A _L	$(332.2 \pm 5.8 \pm 4.7) \times 10^{-5}$	$\pm 4 \times 10^{-5}$
π+ π ⁻	$\pi^0\pi^0$	СР	Re(ɛ'/ɛ)	$(1.65 \pm 0.26) \times 10^{-3}$ (*)	$\pm 0.3 \times 10^{-3}$
π +π ⁻	$\pi^0\pi^0$	СР, СРТ	Im(ε'/ε)	$(-1.2 \pm 2.3) \times 10^{-3}$ (*)	$\pm 4 \times 10^{-3}$
πεν	πev	СРТ	Re(ð)+Re(x_)	Re(δ) = (0.25 ± 0.23) × 10 ⁻³ (*)	$\pm 0.3 \times 10^{-3}$
				$\operatorname{Re}(\mathbf{x}) = (-4.2 \pm 1.7) \times 10^{-3} (*)$	
πεν	πεν	СРТ	$Im(\delta)+Im(x_{+})$	Im(δ) = (-0.6 ± 1.9) × 10 ⁻⁵ (*)	$\pm 4 \times 10^{-3}$
				$Im(x_{+}) = (0.2 \pm 2.2) \times 10^{-3} (*)$	
π+π-	π ⁺ π ⁻		Δm	(5.288 ± 0.043) × 10 ⁹ s ⁻¹	$\pm 0.05 \times 10^9 \text{ s}^{-1}$

$K_L \rightarrow \pi^0 \pi^0$ measurement

- KLOE was designed to study the CP violation into the $\overline{K}K$ system through $Re(\epsilon'/\epsilon)$ measurement.
- To reduce systematic errors we measure the double ratio:

$$\frac{\Gamma(K_S \to \pi^+ \pi^-) \Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^-) \Gamma(K_S \to \pi^0 \pi^0)} = 1 - 6$$

- The most important bg source in this measurement is $K_L \to 3\pi^0;$
- QCAL works well on rejecting background losing 1% of signal;
- QCALT will increase the detection efficiency and the high granularity will help on reducing accidental losses.

!--2

η/η' mixing: gluonium content in η'

Gluonium content in η' evaluated using Rosner model:

$$R_{\phi} = \frac{BR(\phi \rightarrow \eta' \gamma)}{BR(\phi \rightarrow \eta \gamma)} = (4.77 \pm 0.09_{stat} \pm 0.19_{syst}) \times 10^{-3}$$

JHEP07 (2009) 105 KLOE-2

$$|\eta'\rangle = X_{\eta'} \frac{1}{\sqrt{2}} |u\overline{u} + d\overline{d}\rangle + Y_{\eta'} |s\overline{s}\rangle + Z_{\eta'} |glue\rangle$$

$$X_{\eta'} = \cos \phi_G \sin \phi_P$$

$$Y_{\eta'} = \cos \phi_G \cos \phi_P$$

$$[Rosner PRD27(1983) 1101]$$

$$|\eta\rangle = \cos \phi_P \frac{1}{\sqrt{2}} |u\overline{u} + d\overline{d}\rangle - \sin \phi_P |s\overline{s}\rangle$$

$$Z_{\eta'} = \sin \phi_G$$

$$[Rosner PRD27(1983) 1101]$$

$$[Kou PRD63(2001)54027]$$

$$Z_{\eta'} = \sin \phi_G$$

Global fit with more free parameters (also Z_N , Z_{NS} , ϕ_V , m_s/m)

Other SU(3) relations need to be included :

$\Gamma(\omega \rightarrow \eta \gamma)$	$\Gamma(\rho \to \pi^0 \gamma)$	$\Gamma(\phi \rightarrow \eta \gamma)$	$\Gamma(\phi \to \pi^0 \gamma)$	$\underline{\Gamma(K^{*+} \to K^{+}\gamma)}$
$\Gamma(\omega \rightarrow \pi^0 \gamma)$	$\Gamma(\omega \rightarrow \pi^0 \gamma)$	$\Gamma(\omega \rightarrow \pi^0 \gamma)'$	$\Gamma(\omega \rightarrow \pi^0 \gamma)'$	$\Gamma(K^{*0} \to K^0 \gamma)$

	Parameter	Old fit	New fit	New fit (no Ργγ)
	$\mathbb{Z}^{2}_{\eta'}$	0.14 ± 0.04	$\textbf{0.105} \pm \textbf{0.037}$	0.03 ± 0.06
	$oldsymbol{\phi}_{ ext{P}}$	(39.7 ± 0.7)°	(40.7 ± 0.7)°	(41.6 ± 0.8)°
	Z_{NS}	$\boldsymbol{0.91 \pm 0.05}$	$\boldsymbol{0.866 \pm 0.025}$	0.85 ± 0.03
	Z _S	$\boldsymbol{0.89 \pm 0.07}$	$\boldsymbol{0.79 \pm 0.05}$	$\boldsymbol{0.78 \pm 0.05}$
	$oldsymbol{\phi}_{\mathrm{V}}$	3.2°	(3.15 ± 0.10)°	(3.16 ± 0.10)°
	m _s /m	$\boldsymbol{1.24\pm0.07}$	$\boldsymbol{1.24\pm0.07}$	1.24 ± 0.07
$\overline{\mathbf{S}}$ N	$P(\chi^2)$	49%	17%	40.7%

η/η' mixing: from KLOE to KLOE-2

Run at $\sqrt{s} \ge 1.2$ GeV required

$$\sigma(e^+e^- \rightarrow \text{hadr.}) \text{ below 1 GeV}$$

• ~ 3
$$\sigma$$
 discrepancy between $a_{\mu}^{SM} - a_{\mu}^{exp}$ $[a_{\mu} = (g_{\mu} - 2)/2]$
• $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$ main contribution to the uncertainty on a_{μ}^{SM}

$$a_{\mu}^{\text{had, LO}} = 1/(4\pi^3) \int_{4m_{\pi}^2}^{\infty} \sigma(e^+e^- \rightarrow \text{hadr.}) \mathbf{K}(s) ds \quad ; \quad \mathbf{K}(s) \sim 1/s$$

- $\sigma(e^+e^- \rightarrow hadr.)$ below 1 GeV is dominated by $e^+e^- \rightarrow \pi^+\pi^-$
- ϕ factory: fixed $\sqrt{s} \Rightarrow$ Initial State Radiation method

$$\mathbf{s} \cdot \frac{d\sigma(e^+ e^- \rightarrow \pi^+ \pi^- + \gamma)}{ds_{\pi}} = \sigma(e^+ e^- \rightarrow \pi^+ \pi^-) \mathbf{H}(\mathbf{s}, \mathbf{s}_{\pi})$$

• Two different analyses: (1) photon emitted at Small Angle (S.A. analysis) [PLB606(2005)12, PLB670(2009)285] (2) photon emitted at Large Angle (L.A. analysis) [arXiv:1006:5313, submitted to PLB]

S. Miscetti – Discrete 2010 – December 9 2010

¢

Result on L.A. analysis

• 3.2 σ discrepancy a_{μ}^{SM} - a_{μ}^{exp} confirmed

42

KLOE-

$$\Delta a_{\mu}^{\pi\pi} \text{ for different exp:} \qquad \qquad a_{\mu}^{\pi\pi} = \frac{1}{4\pi^{3}} \int_{x_{1}}^{x_{2}} \sigma^{had}(s) K(s) ds$$

$$\Delta a_{\mu}^{\pi\pi}(0.35 - 0.85 \text{GeV}^{2}): \qquad \qquad a_{\mu}^{\pi\pi} = \frac{1}{4\pi^{3}} \int_{x_{1}}^{x_{2}} \sigma^{had}(s) K(s) ds$$

$$KLOE08 \text{ (small angle)} \qquad \qquad a_{\mu}^{\pi\pi} = (379.6 \pm 0.4_{stat} \pm 2.4_{sys} \pm 2.2_{theo}) \cdot 10^{-10}$$

$$A_{\mu}^{\pi\pi} = (376.6 \pm 0.9_{stat} \pm 2.4_{sys} \pm 2.1_{theo}) \cdot 10^{-10}$$

$$0.2\% \quad 0.6\% \quad 0.6\%$$

==

$$a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{stat} \pm 1.2_{sys} \pm 0.4_{theo}) \cdot 10^{-10}$$
$$a_{\mu}^{\pi\pi} = (46.2 \pm 1.0_{stat} \pm 0.3_{sys}) \cdot 10^{-10}$$

$$\begin{aligned} \mathbf{a}_{\mu}^{\ \pi\pi} &= (356.7 \pm 0.4_{stat} \pm 3.1_{sys}) \cdot 10^{-10} \\ \mathbf{a}_{\mu}^{\ \pi\pi} &= (361.5 \pm 1.7_{stat} \pm 2.9_{sys}) \cdot 10^{-10} \\ \mathbf{a}_{\mu}^{\ \pi\pi} &= (361.0 \pm 2.0_{stat} \pm 4.7_{sys}) \cdot 10^{-10} \\ \mathbf{a}_{\mu}^{\ \pi\pi} &= (365.2 \pm 1.9_{stat} \pm 1.9_{sys}) \cdot 10^{-10} \end{aligned}$$

Δa_μ^{ππ}(0.35-0.85GeV²):

KLOE08 (small angle)

KLOE09 (large angle)

Δa^{ππ}(0.152-0.270 GeV²):

CMD-2

KLOE09 (large angle)

Δa^{ππ}(0.397-0.918 GeV²):

KLOE08 (small angle)

Impact of DAFNE-2 on (g-2) $a_{\mu}^{exp} - a_{\mu}^{theo,SM} = (27.7 \pm 8.4)10^{-10}$ **(3.3σ)** [Eidelman, TAU08] 8.4 = ~5_{HLO}⊕~3_{HLbL}⊕6_{BNL} JG09 17816.5 SMCC 2.6 DAENE-2 2.5 1.6 NEW G-2 17810.5 DAFNE-2 **7-8**σ BNI -E821 04 ave (if 27.7 will remain the same) New (g-2) exp 208+1.8 δa, HLO=5.3=3.3(√s<1GeV) ⊕3.9(1<√s<2GeV) ⊕1.2(√s>2GeV) 200 210 220 100 190 200 Lan. 150 120 170 a ₋-11 659 000 (10⁻¹⁰) δa HLO →2.6=1.9 (√s<1GeV) ⊕ 1.3 (√s<1GeV) ⊕1.2(√s>2GeV) This means:

 $\delta\sigma_{HAD} \sim 0.4\% \sqrt{s} < 1 \text{GeV}$ (instead of 0.7% as now) With ISR at 1 GeV $\delta\sigma_{HAD} \sim 2\% 1 < \sqrt{s} < 2 \text{GeV}$ (instead of 6% as now) With Energy Scan 1-2 GeV

Search for $\gamma\gamma \to \sigma \to \pi\pi$

Long debate about the experimental evidence of the $\sigma(600)$ meson

▶ Pole in $\pi\pi$ scattering with vacuum quantum numbers (J^{PC}=0⁺⁺)

 $m_{\sigma} = 441^{+16}_{-8} MeV, \Gamma_{\sigma} = 544^{+24}_{-18} MeV$

Evidence for $\pi^+\pi^-$ bound state (E791, CLEO, BES) from Dalitz plot analyses

Values of mass and width with large uncertainties

> Indirect evidence in the $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ Dalitz plot analysis @ KLOE

OCCUPANCY OF THE DETECTORS

- The space available and the occupancy for any detectors is defined;
- Also the interference between the detectors and BP is verified;
- Some change could be done during the design;
- Any change have to be noticed to the integration group;

Kaons: Ks semielectronic decays

Perspectives for the next KLOE run

- Conditioning of both rings with high current beams to improve vacuum conditions and minimize beam size growth and backgrounds in KLOE \rightarrow in progress
- Closed orbit correction and beam functions optimization
- Horizontal-vertical coupling minimization (~0.3% now)
- Optimization of beam-beam interaction and luminosity
- Optimization of beam collimation with the scrapers to minimize background in KLOE also during injection

Start of KLOE data taking foreseen for mid January

KLOE magnet: the cool down history

between July 27th and August 12th there
 are 3 fridge-out events (turbine low T, cooling
 water interruption and compressed air lack)

In August 23rd new cool-down start but 3 days after stops again due to maintenance of the lab electric power distribution system

 \diamond on August 30th cool-down is resumed, but the coil temperature does not go below 15 K° and for the first time an excessive cooling of the screens is observed

♦ on September 10th it is decided to warm-up the magnet to 110 K° and clean the cooling lines

 \diamond On September 24th WEKA (ex Oxford) contacted: few interventions on values performed. Not successfull. Steve Harrison (responsible for the Oxford of KLOE magnet) arrives on Oct the 4th and suggests to perform a series of tests at 110 K° and then warm-up the magnet at room temperature and perform additional tests.

 \diamond on October 25th cool-down starts again and on November 14th the magnet is cold again (after the fastest cool-down of his history,16 days) and energized.

Dafne parameters

	DAΦNE FINUDA	DA ΦNE Upgrade	
€ _{cross} /2 (mrad)	12.5	25	
ε _x (mmxmrad)	0.34	0.20	
β _x * (cm)	170	20	📏 Larger Piwinski angle
σ _x * (mm)	0.76	0.20	
Φ _{Piwinski}	0.36	2.5	
β _y * (cm)	1.70	0.65	Κ
σ _y * (μm)	5.4 (low current)	2.6	Lower vertical beta
Coupling, %	0.5	0.5	
I _{bunch} (mA)	13	13	
N _{bunch}	110	110	Already achieved
σ _z (mm)	22	20	
L (cm ⁻² s ⁻¹) x10 ³²	1.6	5	

Kicker

A new kicker has been designed to be used for both

- transverse horizontal feedback in the e+ ring
- beam dump (less detector trips and radiation level)

kick strength improved by a factor ≈3 (with the same amplifier power).

- longer strip-line (x2)
- smaller separation between strip-lines: 88 mm -> 60 mm
- new position with higher β

Wiggler

The 8 wigglers have been modified in order to:

- enlarge the good-field region
- reduce higher order components in the B
- increase B_{max} at fixed current
 Improved beam dynamics
 longer beam lifetimes

500KW power reduction with same B_{max} (0.5ME/Year)

Modified Wiggler

• Using 2.2 fb⁻¹ of data acquired at the ϕ peak, KLOE measured: $R_{K} = (2.493 \pm 0.025_{stat} \pm 0.019_{syst}) \times 10^{-5}$

• KLOE δR_K is dominated by the Ke2 event counting and by the control samples statistics: results can improve with the larger data samples foreseen for the oncoming KLOE-2 run.

• With same analysis strategy, 25 fb⁻¹ translate into 0.6% fractional accuracy on R_K.

• Inner Tracker can allow for better performance on K tracking: higher efficiency of Kl2 event selection.

KLOE-2 can significantly improve the accuracy on the measurement of K_L, K[±] lifetimes and K_se3 branching ratio with respect to present world average with data from the first year of data taking, at KLOE-2/step-0.
The present 0.23% fractional uncertainty on |Vus| × f+(0) can be reduced to 0.14% using KLOE present data set together with the KLOE-2/step-0 statistics.
Detector upgrades have not been considered in this evaluation

	$f_+(0)V_{us}$
KLOE today	0.28%
(World Average)	(0.23%)
KLOE + Step-0 + WA	0.14%

With $f_+(0) @ 0.5\%$ the accuracy on the unitarity relation of the first row is

 $\sigma (1 - V_{ud}^2 - V_{us}^2) = 6 x 10^{-4} \left\{ \begin{array}{c} V_{us} @ 0.4\% \text{ from fit} \\ V_{ud} @ 0.026\% \end{array} \right.$

* To improve the accuracy on the V_{us} determination and then its contribution to the total uncertainty on the unitarity relation, a more precise estimate of f_+ (0) is needed.