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THE GRAND UNIFICATION PROGRAM

After 36 years from the first proposal by Georgi and Glashow, GUTs still attract a 
lot of attention for their intrinsic predictivity of spectacular phenomena

• Matter instability

• GUT Monopoles

• In many extensions of the SM, gauge couplings seem to unify in a narrow window 
still allowed by proton decay limits and a consistent QFT description 

• The Yukawa sector supports simultaneously both quark and lepton textures 

• Predictive link between the tiny neutrino masses and the heavy GUT states 

and their potential for understanding our low-energy world through nontrivial 
correlations among different SM sectors

Still no consensus on which is the the minimal theory to be falsified the day after 
the discovery of proton decay   



THE CONCEPT OF MINIMALITY

The concept of minimality admits a certain number of interpretations

• Minimum rank of the group 
• Higgs sector dimensionality
• Naturalness of the D-T splitting  
• Complexity of the gauge unification pattern

• Predictivity: i.e. the number of independent couplings 

SO(10) GUTs usually score better than SU(5) models 

Sticking to the SO(10) case minimality is essentially equivalent to the complexity of 
the Higgs sector

• More predictive (SM matter falls into three 16F  rep.’s)

• Natural relief from the troubles with the simplest SU(5) models

• ...



THE MINIMAL SO(10) HIGGS SECTOR

• Rank reduction: 16H or 126H                                                                        
breaks B-L giving mass to neutrinos but leaves an SU(5) little group

• Further SU(5) breaking: 45H or 54H or 210H         

Just by group theoretical arguments we require the following rep.’s in order to break 
SO(10) to the SM  

However since the early 1980‘s it has been observed that the vacuum dynamics   
aligns the adjoint along the SU(5)⊗U(1) direction 

• non-SUSY: approximate alignment          clashes with unification constraints

• SUSY: exact alignment          little group is SU(5) 

[Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)] 

[Buccella, Derendinger, Savoy, Ferrara (1981)]

The subject of this talk is to provide ways out to these two issues ...

the adjoint 45H can admit little groups different from SU(5)⊗U(1)



INTERMEDIATE SCALES IN THE NON-SUSY SO(10)
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Chain G2 G1

I: −→
210

{2L2R4C} −→
Λ45

{2L2R1X3c}

II: −→
54

{2L2R4CP} −→
Λ210

{2L2R1X3cP}

III: −→
54

{2L2R4CP} −→
Λ45

{2L2R1X3c}

IV: −→
210

{2L2R1X3cP} −→
Λ45

{2L2R1X3c}

V: −→
210

{2L2R4C} −→
Σ45

R

{2L1R4C}

VI: −→
54

{2L2R4CP} −→
Σ45

R

{2L1R4C}

VII: −→
54

{2L2R4CP} −→
λ210

{2L2R4C}

VIII: −→
45

{2L2R1X3c} −→
Σ45

R

{2L1R1X3c}

IX: −→
210

{2L2R1X3cP} −→
Σ45

R

{2L1R1X3c}

X: −→
210

{2L2R4C} −→
σ210

R

{2L1R1X3c}

XI: −→
54

{2L2R4CP} −→
σ210

R

{2L1R1X3c}

XII: −→
45

{2L1R4C} −→
Λ45

{2L1R1X3c}

TABLE I: Relevant SO(10) symmetry breaking chains via two intermediate gauge groups G1 and G2. For each step the
representation of the Higgs multiplet (in SO(10) notation) responsible for the breaking is given. The breaking to the SM group
1Y 2L3c is obtained via a 16 or 126 Higgs representation. The naming and ordering of the gauge groups follows the notation of
ref. [9].

SO(10)
nU∼n2−−−−−−→

〈Φ2〉 ,〈Φ1〉
G1

n1−−−−−−−−→
〈∆126

R 〉, 〈δ16
R 〉

3c2L1Y (6)

SO(10)
MU−−→
ωY

2L2R1X3c
M2−−→
ωR

2L1R1X3c
M1−−→
χR

3c2L1Y (7)

SO(10)
MU−−→
ωR

2L1R4C
M2−−→
ωY

2L1R1X3c
M1−−→
χR

3c2L1Y (8)

v2/Mseesaw ∼
√

∆m2
atm ⇒ Mseesaw ∼ 6 × 1014 GeV (9)

(100 GeV)2/Mseesaw !
√

∆m2
atm ⇒ Mseesaw " 1014 GeV (10)

The Higgs transforming as 10 under SO(10) may carry in general extra quantum numbers of a complex
representation of some additional symmetry (a discussion on the implementation of a Peccei-Quinn U(1)PQ

symmetry in this scenario is given in Ref. [5]). In this case it is sufficient to consider only two complex
symmetric matrices Y10 and Y126 at the renormalizable SO(10) level, namely

16F (Y1010H + Y120120H + Y126126H)16F , (11)

16F 16H16H/Λ16F , (12)

16H16H

Λ
(13)

The unification ansatz in non-SUSY SO(10) predicts the existence of intermediate 
scales in the range 1010÷14 GeV (ideal for neutrino masses and leptogenesis)

SUSY not mandatory for unification after we trade naturalness for predictivity 

The breaking of non-SUSY SO(10) to the SM can be minimally achieved with a pair 
of Higgs multiplets only:  45H⊕16H (or 126H) 

where               by unification constraints
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I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

MI $ MG (1)

MN ∼
(α
π

)
Y10

M2
B−L

MG
∼

M2
B−L

MP
$ MB−L ⊂ 162F (16

∗
H)2/MP (2)

MN ∼
(α
π

)
Y10

M2
B−L

MG
(3)

YP

MP
16F 16F 16

∗
H16∗H ⊃ MN ∼ YP

M2
B−L

MP
(4)

MN ∼ YP
M2

B−L

MP
⊂ YP

MP
16F 16F 16

∗
H16∗H (5)

10H 16H 45H 45V 126H 45H 54H 210H 〈16H〉 = 0 (6)

Y10
√
α (7)

〈16H〉 ∼ MB−L $ MG (8)

16F 16F 126
∗
H ⊃ MN ∼ 〈126∗H〉 ∼ MB−L (9)

162F 16
2
H/MP (10)

W = 452H + 16H16H + 16H45H16H (11)

| 〈16H〉 | = |
〈
16H

〉
| (12)
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SO(10)
MG−−−−−−−−→

ωY ⊂ 〈45H〉
3c 2L 2R 1B−L

MI−−−−−−−−→
ωR ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−−−−−→

χR ⊂ 〈16H〉 or 〈126H〉
3c 2L 1Y (32)

SO(10)
MG−−−−−−−−→

ωR ⊂ 〈45H〉
4C 2L 1R

MI−−−−−−−−→
ωY ⊂ 〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−−−−−→

χR ⊂ 〈16H〉 or 〈126H〉
3c 2L 1Y (33)

Global: O(45)⊗O(32)
〈45H〉−−−−→
〈16H〉

O(44)⊗O(31) =⇒ 44 + 31 = 75 GB (34)

Local: SO(10)
〈45H〉−−−−→
〈16H〉

SM =⇒ 33 WGB (35)

75− 33 = 42 PGB

D. A trivial 45-16 interaction (β = τ = 0)

Turning off just the β and τ -couplings still allows for independent global rotations of the Φ and χ Higgs fields. The
largest global symmetries are those determined by the a2 and λ2 terms in V0 are SO(10)45 and SO(10)16 respectively,
and they are spontaneously broken to global [SU(5)′ ⊗ U(1)] and SU(5) by the VEVs obeying ωR = −ωY and
χR %= 0 respectively. Hence, this setting gives rise to 20 + 21 = 41 GB. The gauged SO(10) is simultaneously broken
down to the SM gauge symmetry (spanned over the intersection of the algebras of the gauged SU(5)′ ⊗ U(1)X and
SU(5) symmetries) and thus 33 WGB are eaten by the gauge bosons. Therefore, 41-33=8 PGB remain in the scalar
spectrum. Thus, there are 8 states that receive contributions from the explicit breaking terms β and τ only.

All of these features can be tested against the explicit derivation of the scalar mass spectrum (see Appendix ??).

E. A tree-level accident

The masses of the states (1, 3, 0) and (8, 1, 0) in Eqs. (71)–(72) depend at the tree level only on the parameter a2.
While the τ term cannot obviously contribute to a tree level 45H mass term, one would generally expect a contri-

bution from the β interaction (proportional to χ2
R). Making the tensor structure explicit, one obtains

β

16
χ2
R (σij)16β(σkl)β16 φijφkl . (36)

Explicit calculation shows, as we already know, a vanishing contribution to the mass of the (1, 3, 0) and (8, 1, 0)
multiplets.

This result is actually more general and it is simply understood by observing that the scalar interaction in Eq. (36)
has the same form of the gauge boson mass from the covariant derivative, c.f. Eq. (C4).

As a consequence, no tree-level mass contribution from the β coupling can arise for the scalars carrying the quantum
numbers of the algebra of the preserved gauge group. This is verified explicitly from inspection of the scalar spectra
on the different vacua (see Sect. ??).

Of course, nothing prevents β and τ interactions from contributing to the masses of (1, 3, 0) and (8, 1, 0) at the
quantum level. For instance, we should expect a one-loop contribution proportional to β2(ω2

Y ,ω
2
R) when 16H states

are exchanged in the loop (independent on χR, that in realistic cases may be negligible on the unification scale).
At one loop we should also expect contributions from the τ trilinear term. It is relevant to observe that the τ induced

mass correction does not depend on the gauge symmetry breaking: it is an SO(10) symmetric renormalization.
The gauge symmetry as well breaks explicitly the independent global transformations of 45H and 16H . Gauge

interactions must therefore contributes at the quantum level to the relevant PGB masses.
One is lead to conclude that any time an SO(10) breaking pattern is driven (lead) by 45H VEVs, quantum

corrections are needed in order to properly study the vacuum structure of the model.

∼ τ2

4π2
(37)
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TREE LEVEL POTENTIAL

Very minimal potential analyzed long ago [Buccella, Ruegg, Savoy (1980)] 
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.

[ Yasuè (1981), Anastaze, Derendinger, Buccella (1983), Babu, Ma (1985)] 
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C. Constraints on the potential parameters

The parameters (couplings and VEVs) of the scalar potential are constrained by the requirements of boundedness
and the absence of tachyonic states, enssuring that the vacuum is stable and the stationary points correspond to
physical minima.

Following the analysis in Appendix B the former implies

a1 > − 13
80a2 , λ1 > 0 . (10)

while the absence of tachyons in the physical spectrum yields

a2 < 0 , −2 < ωY /ωR < − 1
2 . (11)

This can be seen easily from the shape of the tree-level masses of the (8, 1, 0) and (1, 3, 0) SM sub-multiplets of 45H :

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (12)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (13)

which can not be simultaneously positive unless (11) is enforced. Let us also remark that in the τ = 0 limit (corre-
sponding to an extra Z2 symmetry Φ → −Φ) one recovers the results in [24], namely

a2 < 0 , −1 ≤ ωY /ωR ≤ − 2
3 and β > 0 . (14)

In either case one concludes [31] that the only vacuum configurations allowed are those in the close vicinity of the
flipped 5′ 1Z′ setting. Hence, the large hierarchy (of at least four orders of magnitude) between ωR and ωY , required
by gauge coupling unification (see chains VIIIb and XIIb in [36]) cannot be achieved.

This is the key point of the classical argument that the non-SUSY SO(10) GUTs with only the adjoint responsible
for the SO(10) breakdown can not support the phenomenologically favoured symmetry breaking chains. However, as
we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.

B. 16 only (µ = a1 = a2 = α = β = τ = 0)

In analogy to the discussion for the 45, in this case for λ2 = 0 the symmetry is enhanced to O(32). The spontaneous
breaking of O(32) to O(31) due to the 16 VEV χR, leads to 31 goldstone modes, as it can be explicitly checked from
the spectrum. The gauge SO(10) symmetry is broken to SU(5). Therefore 45-24=21 WGB are eaten by gauge fields
and 31-21=10 PGB remain in the scalar spectrum. Their masses receive contributions from the explicit breaking term
λ2.
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we shall see later in Sect. V, the qualitative features of the scalar spectrum can change significantly at the quantum
level and, in principle, a new room can open for a successfull implementation of the desired pattern of the intermediate
scales.

IV. UNDERSTANDING THE SCALAR SPECTRUM

In doing so, we shall strongly benefit from a detailed comprehension of the scalar spectrum which, in particular,
consists in understanding the accidental global symmetries restored in various corners of the parametric space and the
pseudo-Goldstone boson (PGB) nature of the corresponding states. Let us thus clasify one by one the most interesting
limits and provide the PGB counting in each case.

A. 45 only (ν = λ1 = λ2 = α = β = τ = 0)

When a2 = 0, i.e. when only trivial 45H invariants are considered, the scalar potential V0 has an enhanced global
symmetry in the 45 sector given by O(45). After the SSB due to the 45 VEV ω = ωR = −ωY the symmetry is broken
down to O(44) and we expect 44 GB in the scalar spectrum as it is shown explicitly in Appendix ??.

In this case, the gauge SO(10) symmetry is broken to SU(5)′ × U(1)X . Therefore 45-25=20 would-be GB (WGB)
are eaten by gauge fields and 44-20=24 pseudo-GB (PGB) remain in the scalar spectrum. A mass is generated by the
explicit breaking term a2.

B. 16 only (µ = a1 = a2 = α = β = τ = 0)

In analogy to the discussion for the 45, in this case for λ2 = 0 the symmetry is enhanced to O(32). The spontaneous
breaking of O(32) to O(31) due to the 16 VEV χR, leads to 31 goldstone modes, as it can be explicitly checked from
the spectrum. The gauge SO(10) symmetry is broken to SU(5). Therefore 45-24=21 WGB are eaten by gauge fields
and 31-21=10 PGB remain in the scalar spectrum. Their masses receive contributions from the explicit breaking term
λ2.
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∂2V0

∂φ2
ab

= 2a2(ω2
R + ω2

Y + ωRωY + φaiφia + φbiφib) +
β

2
χ2

R + 32(a1 +
3
16

a2)φ2
ab − 2a2φ

2
ab (66)

∂2V0

∂φab∂φcd
= 2a2(φa[cφd]b) +

β

2
χ2

R(σabσcd)16,16 + 32(a1 +
3
16

a2)φabφcd (67)

∂2V0

∂χ∗a∂χa
= ... (68)

∂2V0

∂φab∂χc
= ... (69)

Note that in [4] they consider the case in which
〈φab〉 = 0. Furthermore in [4] (σabσcd)16,16 is re-
placed by Re [(σabσcd)16,16] (I don’t understand why
...).

IV. SCALAR MASS MATRICES

In this section we want to construct the scalar
mass matrices after the first stage (two or three
steps) of the symmetry breaking, where the remnant
gauge symmetry group is the SM one (3c, 2L, 1Y ).

In general we can express a SM field ΨJ as a linear
combination of SO(10) fields ψa in the following way

ΨJ = ca
Jψa , (70)

where the coefficients ca
J depend on the embedding

of the SM into SO(10). This relation can be inverted
(I checked explicitly that ca

J is unitary, but I don’t
understand why ... )

ψa = (c−1)J
aΨJ = (c†)J

aΨJ = (c∗)a
JΨJ . (71)

On the other hand, to obtain the information on the
mass matrices one has to write the expression for the
second derivative. Since

∂

∂ΨJ
=

∂ψa

∂ΨJ

∂

∂ψa
= (c∗)a

J
∂

∂ψa
, (72)

and

∂

∂Ψ∗
J

=
∂ψ∗a
∂Ψ∗

J

∂

∂ψ∗a
= ca

J
∂

∂ψ∗a
, (73)

one has

∂2

∂Ψ∗
J∂ΨJ

= ca
J(c∗)b

J
∂2

∂ψ∗a∂ψb
. (74)

As an example let’s compute the contribution of
φab to the SM states (1, 3, 0) and (8, 1, 0). It is

enough to consider the contribution of one compo-
nent of each multiplet, being the state degenerate at
the SM level. Using Michal’s magic decomposition
(See [5] for the meaning of the quantum numbers.)
and matching the Cartan subalgebra 12 34 56 78 90
with the one used so far 03 12 45 78 69, we have

(0, 0, 0, 0, 2, 0, 0, 0) =
1√
2
(φ03 − φ12) , (75)

for the triplet, and

(3, 0, 0, 0, 0, 0, 0, 0) =
1√
2
(φ69 − φ45) , (76)

for the octet. Then the masses are found to be

M2(1, 3, 0) =
1
2

∂2V0

∂φ2
03

+
1
2

∂2V0

∂φ2
12

− ∂2V0

∂φ03∂φ12

= 2a2(ωY − ωR)(ωY + 2ωR) , (77)

M2(8, 1, 0) =
1
2

∂2V0

∂φ2
69

+
1
2

∂2V0

∂φ2
45

− ∂2V0

∂φ69∂φ45

= 2a2(ωR − ωY )(ωR + 2ωY ) , (78)

where we have used Eqs. (66)–(67) and the explicit
values for the product of sigma matrices given in
Appendix B.

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (79)

M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (80)

⇒ (81)

a2 < 0 (82)

−1 ≤ ωY /ωR ≤ 1
2

(83)

The only possibility allowed by gauge coupling unification requires a splitting between 
ωY and ωR of at least four orders of magnitude !

From the positivity of the scalar states (1,3,0) and (8,1,0) ⊂ 45H

• This is the origin of the common knowledge that non-SUSY SO(10) GUTs with 
just the adjoint driving the GUT breaking are not phenomenologically viable 
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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A TREE LEVEL ACCIDENT

• The states (1,3,0) and (8,1,0) belong to this set of PGB 

Enhanced global symmetries in a trivial limit of the potential
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tunings to be imposed onto the scalar potential [17] so that all the symmetry breaking steps are performed
at the desired scales.

On the technical side one should identify all the Higgs multiplets needed by the breaking pattern under
consideration and keep them according to the gauge symmetry down to the scale of their VEVs. This
typically pulls down a large number of scalars in scenarios where 126H provides the B − L breakdown.

On the other hand, one must take into account that the role of 126H is twofold: in addition to triggering
the G1 breaking it plays a relevant role in the Yukawa sector (Eq. (1)) where it provides the necessary
breaking of the down quark - charged lepton mass degeneracy. For this to work one needs a reasonably
large admixture of the 126H component in the effective electroweak doublets. Since (2, 2, 1)10 can mix with
(2, 2, 15)126 only below the Pati-Salam breaking scale, both fields must be present at the Pati-Salam level
(otherwise the scalar doublet mass matrix does not provide large enough components of both these multiplets
in the light Higgs fields).

Note that the same argument applies also to the 2L1R4C intermediate stage when one must retain the
doublet component of 126H , namely (2, + 1

2 , 15)126, in order for it to eventually admix with (2, + 1
2 , 1)10 in

the light Higgs sector. On the other hand, at the 2L2R1X3c and 2L1R1X3c stages, the (minimal) survival of
only one combination of the φ10 and φ126 scalar doublets (see Table II) is compatible with the Yukawa sector
constraints because the degeneracy between the quark and lepton spectra has already been smeared-out by
the Pati-Salam breakdown.

In summary, potentially realistic renormalizable Yukawa textures in settings with well-separated SO(10)
and Pati-Salam breaking scales call for an additional fine tuning in the Higgs sector. In the scenarios with
126H , the 10H bidoublet (2, 2, 1)10, included in Refs [6–9], must be paired at the 2L2R4C scale with an extra
(2, 2, 15)126 scalar bidoublet (or (2, + 1

2 , 1)10 with (2, + 1
2 , 15)126 at the 2L1R4C stage). This can affect the

running of the gauge couplings in chains I, II, III, V, VI, VII, X, XI and XII.

For the sake of comparison with previous studies [6–9] we shall not include the φ126 multiplets in the first
part of the analysis. Rather, we shall comment on their relevance for gauge unification in Sect. IVC.

III. TWO-LOOP GAUGE RENORMALIZATION GROUP EQUATIONS

In this section we report, in order to fix a consistent notation, the two-loop renormalization group equations
(RGEs) for the gauge couplings. We consider a gauge group of the form U(1)1⊗ ...⊗U(1)N ⊗G1⊗ ...⊗GN ′ ,
where Gi are simple groups.

A. The non-abelian sector

Let us focus first on the non-abelian sector corresponding to G1 ⊗ ... ⊗ GN ′ and defer the full treatment
of the effects due to the extra U(1) factors to section III B. Defining t = log(µ/µ0) we write

dgp

dt
= gp βp (2)

where p = 1, ..., N ′ is the gauge group label. Neglecting for the time being the abelian components, the
β-functions for the G1 × ... × GN ′ gauge couplings read at two-loop level [18–21]:

βp =
g2

p

(4π)2

{
−

11

3
C2(Gp) +

4

3
κS2(Fp) +

1

3
ηS2(Sp) −

2κ

(4π)2
Y4(Fp)

+
g2

p

(4π)2

[
−

34

3
(C2(Gp))

2 +

(
4C2(Fp) +

20

3
C2(Gp)

)
κS2(Fp) +

(
4C2(Sp) +

2

3
C2(Gp)

)
ηS2(Sp)

]

+
g2

q

(4π)2
4
[
κC2(Fq)S2(Fp) + ηC2(Sq)S2(Sp)

]}

where κ = 1, 1
2 for Dirac and Weyl fermions respectively. Correspondingly, η = 1, 1

2 for complex and real
scalar fields. The sum over q $= p corresponding to contributions to βp from the other gauge sectors labelled
by q is understood. Given a fermion F or a scalar S field that transforms according to the representation
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C. A trivial 45-16 potential (a2 =λ2=β=τ =0)

When only trivial invariants of both 45 and 16 are considered ( moduli terms) the global symmetry of V0 is
O(45) ⊗ O(32). It is then broken spontaneously into O(44) ⊗ O(31) by the 45 and 16 VEVs yielding 44+31=75
GB in the scalar spectrum. The gauge SO(10) symmetry is at the same time broken down to the SM gauge group.
Therefore 75-33=42 PGB are left in the spectrum. Their masses should generally receive contributions from the
explicitly breaking terms a2, λ2, β and τ .

SO(10)
MG−−−−→

〈45H〉
3c 2L 2R 1B−L

MI−−−−→
〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−→

〈16H〉 or 〈126H〉
3c 2L 1Y (15)

SO(10)
MG−−−−→

〈45H〉
4C 2L 1R

MI−−−−→
〈45H〉

3c 2L 1R 1B−L
MB−L−−−−−−−−−−−→

〈16H〉 or 〈126H〉
3c 2L 1Y (16)

Global: O(45) ⊗ O(32)
〈45H〉−−−−→
〈16H〉

O(44) ⊗ O(31) =⇒ 44 + 31 = 75 GB (17)

Local: SO(10)
〈45H〉−−−−→
〈16H〉

SM =⇒ 33 WGB (18)

75 - 33 = 42 PGB

D. A trivial 45-16 interaction (β = τ = 0)

Turning off just the β and τ -couplings still allows for independent global rotations of the Φ and χ Higgs fields. The
largest global symmetries are those determined by the a2 and λ2 terms in V0 are SO(10)45 and SO(10)16 respectively,
and they are spontaneously broken to global [SU(5)′ ⊗ U(1)] and SU(5) by the VEVs obeying ωR = −ωY and
χR %= 0 respectively. Hence, this setting gives rise to 20 + 21 = 41 GB. The gauged SO(10) is simultaneously broken
down to the SM gauge symmetry (spanned over the intersection of the algebras of the gauged SU(5)′ ⊗ U(1)X and
SU(5) symmetries) and thus 33 WGB are eaten by the gauge bosons. Therefore, 41-33=8 PGB remain in the scalar
spectrum. Thus, there are 8 states that receive contributions from the explicit breaking terms β and τ only.

All of these features can be tested against the explicit derivation of the scalar mass spectrum (see Appendix ??).

E. A tree-level accident

The masses of the states (1, 3, 0) and (8, 1, 0) in Eqs. (12)–(13) depend at the tree level only on the parameter a2.
While the τ term cannot obviously contribute to a tree level 45H mass term, one would generally expect a contri-

bution from the β interaction (proportional to χ2
R). Making the tensor structure explicit, one obtains

β

16
χ2

R (σij)16β(σkl)β16 φijφkl . (19)

Explicit calculation shows, as we already know, a vanishing contribution to the mass of the (1, 3, 0) and (8, 1, 0)
multiplets.

This result is actually more general and it is simply understood by observing that the scalar interaction in Eq. (19)
has the same form of the gauge boson mass from the covariant derivative, c.f. Eq. (C4).

As a consequence, no tree-level mass contribution from the β coupling can arise for the scalars carrying the quantum
numbers of the algebra of the preserved gauge group. This is verified explicitly from inspection of the scalar spectra
on the different vacua (see Sect. ??).

Of course, nothing prevents β and τ interactions from contributing to the masses of (1, 3, 0) and (8, 1, 0) at the
quantum level. For instance, we should expect a one-loop contribution proportional to β2(ω2

Y , ω2
R) when 16H states

are exchanged in the loop (independent on χR, that in realistic cases may be negligible on the unification scale).
At one loop we should also expect contributions from the τ trilinear term. It is relevant to observe that the τ induced

mass correction does not depend on the gauge symmetry breaking: it is an SO(10) symmetric renormalization.
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Y , ω2
R) when 16H states

are exchanged in the loop (independent on χR, that in realistic cases may be negligible on the unification scale).
At one loop we should also expect contributions from the τ trilinear term. It is relevant to observe that the τ induced

mass correction does not depend on the gauge symmetry breaking: it is an SO(10) symmetric renormalization.
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C. A trivial 45-16 potential (a2 =λ2=β=τ =0)
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Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.

Why the masses of the states (1,3,0) and (8,1,0) are so tightly correlated ?”

“Do not trust arguments based on the lowest order of perturbation theory”
[S. Weinberg (1983)]Second law of progress in theoretical physics: 
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tanβ ∼ 1 (41)

a2 = λ2 = β = τ = 0 (42)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
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REVIVING THE MINIMAL SO(10) GUT

[Coleman, E. Weinberg (1973)]

Explicit computation of the one-loop PGB masses using Effective-Potential methods
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FIG. 1. Typical one-loop diagrams that induce for 〈χ〉 = 0, O(τ/4π, β 〈Φ〉 /4π, g2 〈Φ〉 /4π) renormalization to the mass of 45H

fields at the unification scale. They are relevant for the pseudo GB states, whose tree level mass is proportional to a2.

More precisely, we are interested in the corrections to those 45H scalar states whose tree level mass depends only
on a2 and have the quantum numbers of the preserved gauge algebra. It turns out that when specializing Eq. (32) to
this set of PGB states for χR = 0 the functional mass matrix W 2 and its first derivative do commute. This allows us
to compute the relevant mass corrections in a closed form.

The calculation of the EP running mass from Eq. (32) leads for the states (1, 3, 0) and (8, 1, 0) at µ = MG to the
mass shifts

∆M2(1, 3, 0) =
1

4π2

[

τ2 + β2(2ω2
R − ωRωY + 2ω2

Y ) + g4
(

16ω2
R + ωY ωR + 19ω2

Y

)]

+ Log’s (µ) (41)

∆M2(8, 1, 0) =
1

4π2

[

τ2 + β2(ω2
R − ωRωY + 3ω2

Y ) + g4
(

13ω2
R + ωY ωR + 22ω2

Y

)]

+ Log’s (µ) (42)

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) (43)

+
1

4π2

[

τ2 + β2(2ω2
R − ωRωY + 2ω2

Y ) + g4
(

16ω2
R + ωY ωR + 19ω2

Y

)]

+ Log’s (µ) (44)

(45)

M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) (46)

+
1

4π2

[

τ2 + β2(ω2
R − ωRωY + 3ω2

Y ) + g4
(

13ω2
R + ωY ωR + 22ω2

Y

)]

+ Log’s (µ) (47)

M2(1, 3, 0) = 2a2(ωY − ωR)(ωY + 2ωR) , (48)
M2(8, 1, 0) = 2a2(ωR − ωY )(ωR + 2ωY ) , (49)

where the subleading (and gauge dependent) logarithmic terms are neglected. On the vacua of interest we find the
results reported in Appendix ??. In particular at µ = MG we obtain

• ω = ωR = −ωY (flipped 5′ 1Z′)

M2(24, 0) = −4a2ω
2 +

τ2 + (5β2 + 34g4)ω2

4π2
(50)

• ωR = 0 and ωY $= 0 (3c 2L 2R 1X)

M2(1, 3, 1, 0) = M2(1, 1, 3, 0) = 2a2ω
2
Y +

τ2 + (2β2 + 19g4)ω2
Y

4π2
(51)

M2(8, 1, 1, 0) = −4a2ω
2
Y +

τ2 + (3β2 + 22g4)ω2
Y

4π2
(52)
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An hierarchy between ωY and ωR (as required by unification), while keeping the 
scalar states positive (minimum condition), is now possible just by taking |a2|<10-2
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Holds for any non-SUSY SO(10) model with one adjoint triggering the GUT breaking



WHAT ABOUT NEUTRINOS ? (NON-SUSY)

The simplest scenario featuring the Higgs scalars in                         is likely to fail 
when addressing the absolute neutrino mass scale

2

I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG & MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

RH neutrino mass MN (entering type-I seesaw) 

[Witten (1980); Bajc, Senjanovic (2005)]

• Radiative seesaw
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FIG. 1: A contribution to the radiatively generated fermion mass.
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This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126
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MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.
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within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG $ MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.
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in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG $ MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

In this paper, we point out that all these issues are alleviated if one considers a flipped variant of the SUSY SO(10)
unification. In particular, we shall show that the flipped SO(10) ⊗ U(1) scenario [7–9] offers an attractive option to
break the gauge symmetry to the SM at the renormalizable level by means of a quite simple Higgs sector, namely a
couple of SO(10) spinors 161,2 ⊕ 161,2 and one adjoint.

Within the extended SO(10) ⊗ U(1) gauge algebra one finds in general three inequivalent embeddings of the SM
hypercharge. In addition to the two solutions with the hypercharge stretching over the SU(5) or the SU(5) ⊗ U(1)
subgroups of SO(10) (respectively dubbed as the “standard” and “flipped” SU(5) embeddings), there is a third,
“flipped” SO(10), solution inherent to the SO(10)⊗ U(1) case, with a non-trivial projection of the SM hypercharge
onto the U(1) factor.

Whilst the difference between the standard and the flipped SU(5) embedding is semantical from the SO(10) point
of view, the flipped SO(10) case is qualitatively very different. In particular, the symmetry-breaking “power” of the
SO(10) spinor and adjoint representations is boosted with respect to the standard SO(10) case, increasing the number
of SM singlet fields that may acquire non vanishing VEVs. Technically, flipping allows for a pair of SM singlets in each
of the 16H and 16H “Weyl” spinors, together with four SM singlets within 45H . This is at the root of the possibility
of implementing the gauge symmetry breaking by means of a simple renormalizable Higgs sector. Let us just remark
that, if renormalizability is not required, the breaking can be realized without the adjoint Higgs field, see for instance
the flipped SO(10) model with an additional anomalous U(1) of Ref. [10].



THE GUT SCALE LITTLE HIERARCHY

The hierarchy induced in the Higgs spectrum by MG / MP ≈ 10-2 factors splits the 
GUT-scale thresholds over several orders of magnitude

• Fast proton decay via neutrino mass operators

• Upset of the one-step unification pattern favoured by the MSSM

Unification could be preserved close to the Planck scale

3

Assuming some realistic textures for g and f , in order
to reproduce fermion masses and mixings, and taking
into account a set of uncertainties due to the low-energy
SUSY spectrum, the GUT-thresholds and the hadronic
matrix elements [Quantify better?], the authors of [2]
claim that the new operators related to neutrino masses
lead by themselves to a proton lifetime

Γ−1(νK+) ∼ (0.6− 3)× 1033 yrs . (3)

Nowadays3, the experimental lower bound for the same
channel is [3]

Γ−1(νK+) > 0.670× 1033 yrs . (4)

However, in [2] it is assumed M16 ∼ vR. On the other
hand, in scenarios where the minimization involves non-
renormalizable operators, M16 is forced by the F-term
equations [Give more details?] to be

MNR
16 ∼ vR

MP
vR ∼ 10−2vR , (5)

which brings the proton lifetime dangerously below the
experimental bound

Γ−1(νK+)NR =

(
MNR

16

M16

)2

Γ−1(νK+)

∼ (0.6− 3)× 1029 yrs . (6)

Γ−1(νK+)NR =

(
MG

MP

)2

Γ−1(νK+) (7)

B. One step unification

One of the general consequence of having a nonrenor-
malizable GUT-breaking sector, is that the scalar spec-
trum is uniformly shifted [5] by a factor MG/MP ∼ 10−2

below the gauge spectrum, which sets the value of the
unification scale, MG. Thus, these Higgs thresholds can
potentially upset the prediction of one step gauge unifi-
cation of the MSSM.

C. Neutrino masses

Issues related to the fact that MG can be raised [5] or
lowered by Higgs thresholds, and this implies a departure
from the (accidental) effective RH-neutrino mass scale

MR ∼ MG

MP
MG ∼ 10−21016 GeV ∼ 1014 GeV . (8)

3 By the way, Goran in [4], quotes 2.3× 1033 yrs.

III. FLIPPED SO(10)⊗ U(1)X MODEL

A. Flip or not to flip

• Meaning of flipping: discussion on SU(2)R rota-
tions and Hypercharge embedding.

• SM singlets in 16H and 45H

• Two 16 directions leave always an SU(5) space pre-
served that is projected onto the 45 vacua. On
the other hand with two 16s (+16) the 16 vacuum
direction cannot be all aligned (rotated) and the
little group is the standard model (see appendix
A). Hermiticity (symmetry in the real vev case) of
the ρij coupling as a peculiar constraint on the su-
perpotential couplings (geometric origin from extra
dimension models???)

• example of realistic neutrino mass texture (sensi-
tive to Planck effects)

The decomposition of the 10, 16 and 45 representations
under the SM quantum numbers, for both the standard
and the flipped SO(10) gauge groups, is detailed in Ta-
bles I, II and III.

SO(10) flipped SO(10)

(3, 1;− 1
3 )5 (3, 1;− 1

3 )5

(1, 2;+ 1
2 )5 (1, 2;− 1

2 )5

(3, 1;+ 1
3 )5 (3, 1;− 2

3 )5
(1, 2;− 1

2 )5 (1, 2;− 1
2 )5

TABLE I. Decomposition of the representation 10 under SU(3)c⊗
SU(2)L ⊗U(1)Y , for standard SO(10) and flipped SO(10) respec-
tively. The subscripts keep track of the standard SU(5) origin.

SO(10) flipped SO(10)

(3, 1;+ 1
3 )5 (3, 1;+ 1

3 )5
(1, 2;− 1

2 )5 (1, 2;+ 1
2 )5

(3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)10 (1, 1; 0)10

(1, 1; 0)1 (1, 1; 0)1

TABLE II. Same as in Table I for the 16 representation.

Let us label the SM-singlets contained in the 16 in the
following way: e ≡ (1, 1; 0)10 (only for flipped SO(10))
and ν ≡ (1, 1; 0)1 (for both the embeddings). In the
standard SO(10) embedding, regardless of the number
of 16’s, an SU(5) will be always preserved and then pro-
jected onto the 45 by the F-term equations. Instead,
the flipped SO(10) embedding offers the possibility of
passing through the SU(5) lock, since the 16 contains
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A. Proton decay and effective neutrino masses

In Ref. [12] the emphasis is set on a class of neutrino mass related operators which turns out to be particularly
dangerous for proton stability in scenarios with a nonrenormalizable GUT-breaking sector. The relevant interactions
can be schematically written as

WY ⊃ 1

MP
16F g 16F 16H16H +

1

MP
16F f 16F 16H16H ⊃ vR

MP

(
Q g L T +Q f Q T

)
(1)

where g and f are matrices in the family space, vR ≡ 〈16H〉 =
〈
16H

〉
and T (T ) is the color triplet (anti-triplet)

contained in the 16H (16H). Integrating out the color triplets, whose mass term is labelled M∆, one obtains the
following effective superpotential involving fields belonging to SU(2)L doublets

WL
eff =

〈16H〉
MPMT

(
uTFd′

) (
uTGV ′!− d′TGV ′ν′

)
, (2)

where u and ! denote the physical left-handed up quarks and charged lepton superfields in the basis in which neutral
gaugino interactions are flavor diagonal. The d′ and ν′ fields are related to the physical down quark and light neutrino
fields d and ν by d′ = VCKMd and ν′ = VPMNSν. In turn V ′ = V †

uV!, where Vu and V! diagonalize the left-handed
up quark and charged lepton mass matrices respectively. The 3× 3 matrices (G,F ) operate in the family space and
are related to the Yukawa coupling matrices (g, f) by (G,F ) = V T

u (g, f)Vu.
By assuming realistic textures for g and f , that reproduce the known fermion masses and mixings, and by taking

into account a set of uncertainties related to the low-energy SUSY spectrum, the GUT-thresholds and the hadronic
matrix elements, the authors of [12] argue that the effective operators in Eq. (2) lead to a proton lifetime

Γ−1(νK+) ∼ (0.6− 3)× 1033 yrs , (3)

at the verge of the current experimental lower bound of 0.670 × 1033 years [13]. In Eq. (3) the authors assume that
the color triplet masses cluster about the GUT scale, MT ≈ 〈16H〉 ∼ 〈45H〉 ≡ MG. On the other hand, in scenarios
where at the renormalizable level SO(10) is broken to SU(5) and the residual SU(5) symmetry is broken to SM
by means of non-renormalizable operators, the effective scale of the SU(5) breaking effects are typically suppressed
by 〈16H〉 /MP or 〈45H〉 /MP with respect to MG. As a consequence, the SU(5)-part of the colored triplet higgsino
spectrum is effectively pulled down to the M2

G/MP scale, in a clash with proton stability.

B. GUT-scale thresholds and one-step unification

The “delayed” residual SU(5) breakdown has obvious implications for the shape of the gauge coupling unification
pattern. Indeed, the SU(5)/SM gauge bosons, together with the relevant part of the Higgs spectrum, tend to be
uniformly shifted [5] by a factor MG/MP ∼ 10−2 below the scale of the SO(10)/SU(5) gauge spectrum, that sets the
unification scale, MG. These thresholds may jeopardize the successful one-step gauge unification pattern favoured by
the TeV-scale SUSY extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a non-trivial interplay among several GUT-scale thresholds [5] one may in principle end up with a viable
gauge unification pattern. Namely, the threshold effects in different SM gauge sectors may be such that unification
is preserved at a larger scale. In such a case the MG/MP suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because accordingly the VEVs entering the effective operator responsible for
the RH neutrino Majorana mass term 16F 16F 16H16H/MP are raised and thus MR ∼ M2

G/MP tends to overshoot
the upper limit MR ! 1014 GeV implied by the light neutrino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can provide a key to overcoming the SU(5) “lock” of the minimal
SUSY SO(10) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y Higgs model with 16H ⊕ 16H ⊕ 45H , such an effective scenario is prone
to fail when addressing the known proton stability and light neutrino phenomenology.

III. MINIMAL FLIPPED SO(10) HIGGS MODEL

As already anticipated in the previous sections, in a standard SO(10) framework with a Higgs sector built off
lowest-dimensional representations (up to the adjoint) it is rather difficult to achieve a phenomenologically viable
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MT ≈ MG

MP
MG (4)

B. GUT-scale thresholds and one-step unification

The “delayed” residual SU(5) breakdown has obvious implications for the shape of the gauge coupling unification
pattern. Indeed, the SU(5)/SM gauge bosons, together with the relevant part of the Higgs spectrum, tend to be
uniformly shifted [5] by a factor MG/MP ∼ 10−2 below the scale of the SO(10)/SU(5) gauge spectrum, that sets the
unification scale, MG. These thresholds may jeopardize the successful one-step gauge unification pattern favoured by
the TeV-scale SUSY extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a non-trivial interplay among several GUT-scale thresholds [5] one may in principle end up with a viable
gauge unification pattern. Namely, the threshold effects in different SM gauge sectors may be such that unification
is preserved at a larger scale. In such a case the MG/MP suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because accordingly the VEVs entering the effective operator responsible for
the RH neutrino Majorana mass term 16F 16F 16H16H/MP are raised and thus MR ∼ M2

G/MP tends to overshoot
the upper limit MR ! 1014 GeV implied by the light neutrino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can provide a key to overcoming the SU(5) “lock” of the minimal
SUSY SO(10) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y Higgs model with 16H ⊕ 16H ⊕ 45H , such an effective scenario is prone
to fail when addressing the known proton stability and light neutrino phenomenology.
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Nevertheless, flipping is not per-se sufficient to cure the SU(5) “lock” of standard SO(10) with 16H ⊕ 16H ⊕ 45H
in the Higgs sector. Indeed, the adjoint does not reduce the rank and the bi-spinor, in spite of the two qualitatively
different SM singlets involved, can lower it only by a single unit, leaving a residual SU(5)⊗U(1) symmetry (the two
SM singlet directions in the 16H still leave an SU(5) algebra as little group). Only when two pairs of 16H ⊕ 16H
(interacting via 45H) are introduced the two pairs of SM singlet VEVs in the spinor multiplets may not generally be
aligned and the little group is reduced to the SM.

Thus, the simplest renormalizable SUSY Higgs model that can provide the spontaneous breaking of the SO(10)
GUT symmetry to the SM by means of Higgs representations not larger than the adjoint, is the flipped SO(10)⊗U(1)
scenario with two copies of the 16 ⊕ 16 bi-spinor supplemented by the adjoint 45. Notice further that in the flipped
embedding the spinor representations include also weak doublets that may trigger the electroweak symmetry breaking
and allow for renormalizable Yukawa interactions with the chiral matter fields distributed in the flipped embedding
over 16⊕ 10⊕ 1.

Remarkably, the basics of the mechanism we advocate can be embedded in an underlying non-renormalizable E6

Higgs model featuring a pair of 27H ⊕ 27H and the adjoint 78H .
There are similarities between the SO(10) discussion of the breaking patterns and the E6 case, that shows however

a crucial difference, related basically to the larger algebra. It has been shown long ago [25] that the renormalizable
SUSY E6 Higgs model spanned on a single copy of 27H ⊕27H ⊕78H leaves an SO(10) symmetry unbroken. Two pairs
of 27H ⊕ 27H are needed to reduce the rank by two units. In spite of the fact that the two SM singlet directions in
the 27H are exactly those of the “flipped” 16H , the little group of the SM singlet directions

〈
27H ⊕ 27H

〉
and 〈78H〉

remains at the renormalizable level SU(5), as we will explicitly show. This is just a consequence of the larger E6

algebra as compared to its maximal subalgebra SO(10)⊗ U(1).
Adding NR adjoint interactions allows for a disalignment of the 〈78H〉, such that the little group is reduced to

the SM. Being a one-step E6 breaking phenomenologically problematic as mentioned earlier, we argue for a two-step
breaking, via flipped SO(10)⊗ U(1), with the E6 scale near the Planck scale.

In summary, we make the case for an anomaly free flipped SO(10) ⊗ U(1) partial GUT scenario. We provide a
detailed discussion of the symmetry breaking pattern obtained within the minimal flipped SO(10) SUSY Higgs model
and consider its possible E6 embedding. We finally present an introductory discussion of the flavour structure offered
by these settings.

II. THE GUT-SCALE LITTLE HIERARCHY

In supersymmetric SO(10) models with just 45H ⊕ 16H ⊕ 16H governing the GUT breaking, one way to obtain the
misalignment between the adjoint and the spinors is that of invoking new physics at the Plank scale, parametrized in
a model-independent way by a tower of effective operators suppressed by powers of MP .

What we dub the ”GUT-scale little hierarchy” is the hierarchy induced in the GUT spectrum byMG/MP suppressed
effective operators, which may split the GUT-scale thresholds over several orders of magnitude. In turn this may
be highly problematic for proton stability and the gauge unification in low energy SUSY scenarios (as discussed for
instance in [11]). It may also jeopardize the neutrino mass generation in the seesaw scheme. We briefly review the
relevant issues.

A. Proton decay and effective neutrino masses

In Ref. [12] the emphasis is set on a class of neutrino mass related operators which turns out to be particularly
dangerous for proton stability in scenarios with a nonrenormalizable GUT-breaking sector. The relevant interactions
can be schematically written as

WY ⊃ 1

MP
16F g 16F 16H16H +

1

MP
16F f 16F 16H16H ⊃ 〈16H〉

MP

(
Q g L T +Q f Q T

)
(12)

where g and f are matrices in the family space, vR ≡ 〈16H〉 =
〈
16H

〉
and T (T ) is the color triplet (anti-triplet)

contained in the 16H (16H). Integrating out the color triplets, whose mass term is labelled M∆, one obtains the
following effective superpotential involving fields belonging to SU(2)L doublets

WL
eff =

〈16H〉
MPMT

(
uTFd′

) (
uTGV ′!− d′TGV ′ν′

)
, (13)

where u and ! denote the physical left-handed up quarks and charged lepton superfields in the basis in which neutral
gaugino interactions are flavor diagonal. The d′ and ν′ fields are related to the physical down quark and light neutrino
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By assuming realistic textures for g and f , that reproduce the known fermion masses and mixings, and by taking

into account a set of uncertainties related to the low-energy SUSY spectrum, the GUT-thresholds and the hadronic
matrix elements, the authors of [12] argue that the effective operators in Eq. (2) lead to a proton lifetime

Γ−1(νK+) ∼ (0.6− 3)× 1033 yrs , (3)

at the verge of the current experimental lower bound of 0.670 × 1033 years [13]. In Eq. (3) the authors assume that
the color triplet masses cluster about the GUT scale, M∆ ≈ 〈16H〉 ∼ 〈45H〉 ≡ MG. On the other hand, in scenarios
where at the renormalizable level SO(10) is broken to SU(5) and the residual SU(5) symmetry is broken to SM
by means of non-renormalizable operators, the effective scale of the SU(5) breaking effects are typically suppressed
by 〈16H〉 /MP or 〈45H〉 /MP with respect to MG. As a consequence, the SU(5)-part of the colored triplet higgsino
spectrum is effectively pulled down to the M2

G/MP scale, in a clash with proton stability.

B. GUT-scale thresholds and one-step unification

The “delayed” residual SU(5) breakdown has obvious implications for the shape of the gauge coupling unification
pattern. Indeed, the SU(5)/SM gauge bosons, together with the relevant part of the Higgs spectrum, tend to be
uniformly shifted [5] by a factor MG/MP ∼ 10−2 below the scale of the SO(10)/SU(5) gauge spectrum, that sets the
unification scale, MG. These thresholds may jeopardize the successful one-step gauge unification pattern favoured by
the TeV-scale SUSY extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a non-trivial interplay among several GUT-scale thresholds [5] one may in principle end up with a viable
gauge unification pattern. Namely, the threshold effects in different SM gauge sectors may be such that unification
is preserved at a larger scale. In such a case the MG/MP suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because accordingly the VEVs entering the effective operator responsible for
the RH neutrino Majorana mass term 16F 16F 16H16H/MP are raised and thus MR ∼ M2

G/MP tends to overshoot
the upper limit MR ! 1014 GeV implied by the light neutrino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can provide a key to overcoming the SU(5) “lock” of the minimal
SUSY SO(10) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y Higgs model with 16H ⊕ 16H ⊕ 45H , such an effective scenario is prone
to fail when addressing the known proton stability and light neutrino phenomenology.

III. MINIMAL FLIPPED SO(10) HIGGS MODEL

As already anticipated in the previous sections, in a standard SO(10) framework with a Higgs sector built off
lowest-dimensional representations (up to the adjoint) it is rather difficult to achieve a phenomenologically viable

[Babu, Pati, Wilczek (2000)]

• Unwelcome for RH neutrino masses MN ≈ MG2 / MP  
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can be schematically written as

WY ⊃ 1

MP
16F g 16F 16H16H +

1

MP
16F f 16F 16H16H ⊃ 〈16H〉

MP

(
Q g L T +Q f Q T

)
(46)

where g and f are matrices in the family space, vR ≡ 〈16H〉 =
〈
16H

〉
and T (T ) is the color triplet (anti-triplet)

contained in the 16H (16H). Integrating out the color triplets, whose mass term is labelled M∆, one obtains the
following effective superpotential involving fields belonging to SU(2)L doublets

WL
eff =

〈16H〉
MPMT

(
uTFd′

) (
uTGV ′!− d′TGV ′ν′

)
, (47)

where u and ! denote the physical left-handed up quarks and charged lepton superfields in the basis in which neutral
gaugino interactions are flavor diagonal. The d′ and ν′ fields are related to the physical down quark and light neutrino
fields d and ν by d′ = VCKMd and ν′ = VPMNSν. In turn V ′ = V †

uV!, where Vu and V! diagonalize the left-handed
up quark and charged lepton mass matrices respectively. The 3× 3 matrices (G,F ) operate in the family space and
are related to the Yukawa coupling matrices (g, f) by (G,F ) = V T

u (g, f)Vu.
By assuming realistic textures for g and f , that reproduce the known fermion masses and mixings, and by taking

into account a set of uncertainties related to the low-energy SUSY spectrum, the GUT-thresholds and the hadronic
matrix elements, the authors of [12] argue that the effective operators in Eq. (47) lead to a proton lifetime

Γ−1(νK+) ∼ (0.6− 3)× 1033 yrs , (48)

( Γ−1(νK+)exp > 0.670× 1033 yrs (49)

at the verge of the current experimental lower bound of 0.670×1033 years [13]. In Eq. (48) the authors assume that
the color triplet masses cluster about the GUT scale, MT ≈ 〈16H〉 ∼ 〈45H〉 ≡ MG. On the other hand, in scenarios
where at the renormalizable level SO(10) is broken to SU(5) and the residual SU(5) symmetry is broken to SM
by means of non-renormalizable operators, the effective scale of the SU(5) breaking effects are typically suppressed
by 〈16H〉 /MP or 〈45H〉 /MP with respect to MG. As a consequence, the SU(5)-part of the colored triplet higgsino
spectrum is effectively pulled down to the M2

G/MP scale, in a clash with proton stability.

MT ≈ MG

MP
MG (50)

B. GUT-scale thresholds and one-step unification

The “delayed” residual SU(5) breakdown has obvious implications for the shape of the gauge coupling unification
pattern. Indeed, the SU(5)/SM gauge bosons, together with the relevant part of the Higgs spectrum, tend to be
uniformly shifted [5] by a factor MG/MP ∼ 10−2 below the scale of the SO(10)/SU(5) gauge spectrum, that sets the
unification scale, MG. These thresholds may jeopardize the successful one-step gauge unification pattern favoured by
the TeV-scale SUSY extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a non-trivial interplay among several GUT-scale thresholds [5] one may in principle end up with a viable
gauge unification pattern. Namely, the threshold effects in different SM gauge sectors may be such that unification
is preserved at a larger scale. In such a case the MG/MP suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because accordingly the VEVs entering the effective operator responsible for
the RH neutrino Majorana mass term 16F 16F 16H16H/MP are raised and thus MR ∼ M2

G/MP tends to overshoot
the upper limit MR ! 1014 GeV implied by the light neutrino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can provide a key to overcoming the SU(5) “lock” of the minimal
SUSY SO(10) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y Higgs model with 16H ⊕ 16H ⊕ 45H , such an effective scenario is prone
to fail when addressing the known proton stability and light neutrino phenomenology.

Is it possible to overcome the SU(5) lock at the renormalizable level while keeping 
only spinorial and adjoint rep.’s ?           Flipped embeddings ...

4

A. Proton decay and effective neutrino masses

In Ref. [12] the emphasis is set on a class of neutrino mass related operators which turns out to be particularly
dangerous for proton stability in scenarios with a nonrenormalizable GUT-breaking sector. The relevant interactions
can be schematically written as

WY ⊃ 1

MP
16F g 16F 16H16H +

1

MP
16F f 16F 16H16H ⊃ vR

MP

(
Q g L T +Q f Q T

)
(1)

where g and f are matrices in the family space, vR ≡ 〈16H〉 =
〈
16H

〉
and T (T ) is the color triplet (anti-triplet)

contained in the 16H (16H). Integrating out the color triplets, whose mass term is labelled M∆, one obtains the
following effective superpotential involving fields belonging to SU(2)L doublets

WL
eff =

〈16H〉
MPMT

(
uTFd′

) (
uTGV ′!− d′TGV ′ν′

)
, (2)

where u and ! denote the physical left-handed up quarks and charged lepton superfields in the basis in which neutral
gaugino interactions are flavor diagonal. The d′ and ν′ fields are related to the physical down quark and light neutrino
fields d and ν by d′ = VCKMd and ν′ = VPMNSν. In turn V ′ = V †

uV!, where Vu and V! diagonalize the left-handed
up quark and charged lepton mass matrices respectively. The 3× 3 matrices (G,F ) operate in the family space and
are related to the Yukawa coupling matrices (g, f) by (G,F ) = V T

u (g, f)Vu.
By assuming realistic textures for g and f , that reproduce the known fermion masses and mixings, and by taking

into account a set of uncertainties related to the low-energy SUSY spectrum, the GUT-thresholds and the hadronic
matrix elements, the authors of [12] argue that the effective operators in Eq. (2) lead to a proton lifetime

Γ−1(νK+) ∼ (0.6− 3)× 1033 yrs , (3)

at the verge of the current experimental lower bound of 0.670 × 1033 years [13]. In Eq. (3) the authors assume that
the color triplet masses cluster about the GUT scale, MT ≈ 〈16H〉 ∼ 〈45H〉 ≡ MG. On the other hand, in scenarios
where at the renormalizable level SO(10) is broken to SU(5) and the residual SU(5) symmetry is broken to SM
by means of non-renormalizable operators, the effective scale of the SU(5) breaking effects are typically suppressed
by 〈16H〉 /MP or 〈45H〉 /MP with respect to MG. As a consequence, the SU(5)-part of the colored triplet higgsino
spectrum is effectively pulled down to the M2

G/MP scale, in a clash with proton stability.

B. GUT-scale thresholds and one-step unification

The “delayed” residual SU(5) breakdown has obvious implications for the shape of the gauge coupling unification
pattern. Indeed, the SU(5)/SM gauge bosons, together with the relevant part of the Higgs spectrum, tend to be
uniformly shifted [5] by a factor MG/MP ∼ 10−2 below the scale of the SO(10)/SU(5) gauge spectrum, that sets the
unification scale, MG. These thresholds may jeopardize the successful one-step gauge unification pattern favoured by
the TeV-scale SUSY extension of the SM (MSSM).

C. GUT-scale thresholds and neutrino masses

With a non-trivial interplay among several GUT-scale thresholds [5] one may in principle end up with a viable
gauge unification pattern. Namely, the threshold effects in different SM gauge sectors may be such that unification
is preserved at a larger scale. In such a case the MG/MP suppression is at least partially undone. This, in turn, is
unwelcome for the neutrino mass scale because accordingly the VEVs entering the effective operator responsible for
the RH neutrino Majorana mass term 16F 16F 16H16H/MP are raised and thus MR ∼ M2

G/MP tends to overshoot
the upper limit MR ! 1014 GeV implied by the light neutrino masses generated by the seesaw mechanism.

Thus, although the Planck-induced operators can provide a key to overcoming the SU(5) “lock” of the minimal
SUSY SO(10) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y Higgs model with 16H ⊕ 16H ⊕ 45H , such an effective scenario is prone
to fail when addressing the known proton stability and light neutrino phenomenology.

III. MINIMAL FLIPPED SO(10) HIGGS MODEL

As already anticipated in the previous sections, in a standard SO(10) framework with a Higgs sector built off
lowest-dimensional representations (up to the adjoint) it is rather difficult to achieve a phenomenologically viable
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I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

MN ∼
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π

)
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MG
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MP
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∗
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π
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(2)
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MP
16F 16F 16

∗
H16∗H ⊃ MN ∼ YP

M2
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MP
(3)

10H 16H 45H 45V 126H 45H 54H 210H 〈16H〉 = 0 (4)

Y10
√
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〈16H〉 ∼ MB−L $ MG (6)
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| (10)

〈45H〉 ∝
〈
16H16H

〉
(11)

G ⊃ H ⊗ U(1)X ⊃ [K ⊗ U(1)Z ]⊗ U(1)X (12)Simple

2

I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
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G ⊃ H ⊗ U(1)X ⊃ [K ⊗ U(1)Z ]⊗ U(1)X (12)Simple or Semi-simple
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I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.
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(rank K) = (rank H)− 1 = (rank G)− 2 (13)

G → H → K ⊗ U(1)Z (14)

G → H ⊗ U(1) → K ⊗ U(1)Z̃ (15)

Z̃ = αZ + βX , β $= 0 (16)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ) MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

• Standard breaking chain 

3

(rank K) = (rank H)− 1 = (rank G)− 2 (13)

G → H → K ⊗ U(1)Z (14)

G → H ⊗ U(1) → K ⊗ U(1)Z̃ (15)

Z̃ = αZ + βX , β $= 0 (16)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ) MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

• Flipped breaking chain 

3

(rank K) = (rank H)− 1 = (rank G)− 2 (13)

G → H → K ⊗ U(1)Z (14)

G → H ⊗ U(1)X → K ⊗ U(1)Z̃ (15)

Z̃ = αZ + βX , β $= 0 (16)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.
Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running

within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ) MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

3

(rank K) = (rank H)− 1 = (rank G)− 2 (13)

G → H → K ⊗ U(1)Z (14)

G → H ⊗ U(1)X → K ⊗ U(1)Z̃ (15)

Z̃ = αZ + βX , β $= 0 (16)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.
Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running

within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ) MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
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• Flipping:  corresponds to a π rotation in the SU(2)R space !

• Notice the SM-singlet in the 10 of Flipped SU(5)

Requiring that the rep.’s of G decompose in submultiplets with the same quantum numbers under 
both                   and                    fixes α and β 
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level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ) MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.
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[Barr (1989)]
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A. Introducing the model

1. Hypercharge embeddings in SO(10)⊗ U(1)

The so called flipped realization of the SO(10) gauge symmetry requires an additional U(1)X gauge factor in
order to provide an extra degree of freedom for the SM hypercharge identification. For a fixed embedding of the
SU(3)c ⊗ SU(2)L subgroup within SO(10), the SM hypercharge can be generally spanned over the three remaining
Cartans generating the abelian U(1)3 subgroup of the SU(10) ⊗ U(1)X/(SU(3)c ⊗ SU(2)L) coset. There are two
consistent implementations of the SM hypercharge within the SO(10) algebra (commonly denoted by standard and
flipped SU(5)), while a third one becomes available due to the presence of U(1)X .
In order to discuss the different embeddings we find useful to consider two basis for the U(1)3 subgroup. Adopting

the traditional left-right (LR) basis corresponding to the SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)B−L subalgebra of SO(10),
one can span the SM hypercharge on the generators of U(1)R ⊗ U(1)B−L ⊗ U(1)X :

Y = αT (3)
R + β(B − L) + γX. (5)

The normalization of the T (3)
R and B − L charges is chosen so that the decompositions of the spinorial and vector

representations of SO(10) w.r.t. SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L read

16 = (3, 2; 0,+ 1
3 )⊕ (3, 1;+ 1

2 ,−
1
3 )⊕ (3, 1;− 1

2 ,−
1
3 )

⊕ (1, 2; 0,−1)⊕ (1, 1;+ 1
2 ,+1)⊕ (1, 1;− 1

2 ,+1) ,
10 = (3, 1; 0,− 2

3 )⊕ (3, 1; 0,+ 2
3 ) (6)

⊕ (1, 2;+ 1
2 , 0)⊕ (1, 2;− 1

2 , 0) ,

which account for the standard B − L and T (3)
R assignments.

SO(10)⊗ U(1)X ⊃ SU(5)⊗ U(1)Z ⊗ U(1)X ⊃ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ′ ⊗ U(1)Z ⊗ U(1)X (7)

Alternatively, considering the SU(5) ⊗ U(1)Z subalgebra of SU(10), we identify the U(1)Y ′ ⊗ U(1)Z ⊗ U(1)X
subgroup of SO(10)⊗ U(1)X , and equivalently write:

Y = α̃Y ′ + β̃Z + γ̃X , (8)

where Y ′ and Z are normalized so that the SU(3)c ⊗ SU(2)L ⊗ U(1)Y ′ ⊗ U(1)Z analogue of eqs. (6) reads:

16 = (3, 2;+ 1
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3 ,−3)⊕ (3, 1;− 2
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3 ,+2) (9)
⊕ (1, 2;+ 1

2 ,−2)⊕ (1, 2;− 1
2 ,+2) .

In both cases, the U(1)X charge has been conveniently fixed to X16 = +1 for the spinorial representation (and thus
X10 = −2 and also X1 = +4 for the SO(10) vector and singlet, respectively). This is the only option to obtain an
anomaly-free U(1)X , that allows SU(10)⊗ U(1)X to be naturally embedded into E6.

It is a straightforward exercise to show that in order to accommodate the SM quark multiplets with quantum
numbers Q = (3, 2, 1

6 ), u
c = (3, 1,− 2

3 ) and dc = (3, 1,+ 1
3 ) there are only three solutions.

On the U(1)3 bases of Eq. (5) and Eq. (8) one obtains,

α = 1 ,β = 1
2 , γ = 0

(
α̃ = 1 , β̃ = 0 , γ̃ = 0

)
(10)

which is nothing but the “standard” embedding of the SM matter in SO(10). Explicitly, Y = T (3)
R + 1

2 (B −L) in the
LR basis (while Y = Y ′ in the SU(5) picture).

The second option is characterized by

α = −1 ,β = 1
2 , γ = 0

(
α̃ = − 1

5 , β̃ = 1
5 , γ̃ = 0

)
(11)
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A. Introducing the model

1. Hypercharge embeddings in SO(10)⊗ U(1)

The so called flipped realization of the SO(10) gauge symmetry requires an additional U(1)X gauge factor in
order to provide an extra degree of freedom for the SM hypercharge identification. For a fixed embedding of the
SU(3)c ⊗ SU(2)L subgroup within SO(10), the SM hypercharge can be generally spanned over the three remaining
Cartans generating the abelian U(1)3 subgroup of the SU(10) ⊗ U(1)X/(SU(3)c ⊗ SU(2)L) coset. There are two
consistent implementations of the SM hypercharge within the SO(10) algebra (commonly denoted by standard and
flipped SU(5)), while a third one becomes available due to the presence of U(1)X .
In order to discuss the different embeddings we find useful to consider two basis for the U(1)3 subgroup. Adopting

the traditional left-right (LR) basis corresponding to the SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)B−L subalgebra of SO(10),
one can span the SM hypercharge on the generators of U(1)R ⊗ U(1)B−L ⊗ U(1)X :

Y = αT (3)
R + β(B − L) + γX. (5)

The normalization of the T (3)
R and B − L charges is chosen so that the decompositions of the spinorial and vector

representations of SO(10) w.r.t. SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L read

16 = (3, 2; 0,+ 1
3 )⊕ (3, 1;+ 1

2 ,−
1
3 )⊕ (3, 1;− 1

2 ,−
1
3 )

⊕ (1, 2; 0,−1)⊕ (1, 1;+ 1
2 ,+1)⊕ (1, 1;− 1

2 ,+1) ,
10 = (3, 1; 0,− 2

3 )⊕ (3, 1; 0,+ 2
3 ) (6)

⊕ (1, 2;+ 1
2 , 0)⊕ (1, 2;− 1

2 , 0) ,

which account for the standard B − L and T (3)
R assignments.

SO(10)⊗ U(1)X ⊃ SU(5)⊗ U(1)Z ⊗ U(1)X ⊃ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ′ ⊗ U(1)Z ⊗ U(1)X (7)

U(1)Y (8)

Alternatively, considering the SU(5) ⊗ U(1)Z subalgebra of SU(10), we identify the U(1)Y ′ ⊗ U(1)Z ⊗ U(1)X
subgroup of SO(10)⊗ U(1)X , and equivalently write:

Y = α̃Y ′ + β̃Z + γ̃X , (9)

where Y ′ and Z are normalized so that the SU(3)c ⊗ SU(2)L ⊗ U(1)Y ′ ⊗ U(1)Z analogue of eqs. (6) reads:

16 = (3, 2;+ 1
6 ,+1)⊕ (3, 1;+ 1

3 ,−3)⊕ (3, 1;− 2
3 ,+1)

⊕ (1, 2;− 1
2 ,−3)⊕ (1, 1;+1,+1)⊕ (1, 1; 0,+5) ,

10 = (3, 1;− 1
3 ,−2)⊕ (3, 1;+ 1

3 ,+2) (10)
⊕ (1, 2;+ 1

2 ,−2)⊕ (1, 2;− 1
2 ,+2) .

In both cases, the U(1)X charge has been conveniently fixed to X16 = +1 for the spinorial representation (and thus
X10 = −2 and also X1 = +4 for the SO(10) vector and singlet, respectively). This is the only option to obtain an
anomaly-free U(1)X , that allows SU(10)⊗ U(1)X to be naturally embedded into E6.

It is a straightforward exercise to show that in order to accommodate the SM quark multiplets with quantum
numbers Q = (3, 2, 1

6 ), u
c = (3, 1,− 2

3 ) and dc = (3, 1,+ 1
3 ) there are only three solutions.

On the U(1)3 bases of Eq. (5) and Eq. (8) one obtains,

α = 1 ,β = 1
2 , γ = 0

(
α̃ = 1 , β̃ = 0 , γ̃ = 0

)
(11)

which is nothing but the “standard” embedding of the SM matter in SO(10). Explicitly, Y = T (3)
R + 1

2 (B −L) in the
LR basis (while Y = Y ′ in the SU(5) picture).

The second option is characterized by

α = −1 ,β = 1
2 , γ = 0

(
α̃ = − 1

5 , β̃ = 1
5 , γ̃ = 0

)
(12)
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α = 1 ,β = 1
2 , γ = 0 α = 1 β = 0 γ = 0 (13)
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which is nothing but the “standard” embedding of the SM matter in SO(10). Explicitly, Y = T (3)
R + 1

2 (B − L) in
the LR basis (while Y = Y ′ in the SU(5) picture).

The second option is characterized by

α = −1 ,β = 1
2 , γ = 0

(
α̃ = − 1

5 , β̃ = 1
5 , γ̃ = 0

)
(14)

α = −1 ,β = 1
2 , γ = 0 α = − 1

5 β = 1
5 γ = 0 (15)

which is usually denoted “flipped SU(5)” [14, 15] embedding because the SM hypercharge is spanned non-trivially on
the SU(5)⊗U(1)Z subgroup1 of SO(10), Y = 1

5 (Z−Y ′). Remarkably, from the SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)B−L

perspective this setting corresponds to a sign flip of the SU(2)R Cartan operator T 3
R, namely Y = −T 3

R + 1
2 (B − L)

which can be viewed as a π rotation in the SU(2)R algebra.
A third solution corresponds to

α = 0,β = − 1
4 , γ = 1

4

(
α̃ = − 1

5 , β̃ = − 1
20 , γ̃ = 1

4

)
(16)

α = − 1
5 β = − 1

20 γ = 1
4 (17)

denoted as “flipped SO(10)” [7–9] embedding of the SM hypercharge. Notice, in particular, the fundamental
difference between the setting (15) with γ = γ̃ = 1

4 and the two previous cases (11) and (13) where U(1)X does not
play any role.

Analogously to what found for Y , once we consider the additional anomaly-free U(1)X gauge factor, there are
three SM-compatible ways of embedding the physical (B − L) into SO(10) ⊗ U(1)X . Using the SU(5) compatible
description they are given by (see Ref. [16] for a complete set of relations)

(B − L) = 1
5 (4Y

′ + Z) , (18)
(B − L) = 1

20 (16Y
′ − Z + 5X) , (19)

(B − L) = − 1
20 (8Y

′ − 3Z − 5X) . (20)

where the first assignment is the standard B −L embedding in Eq. (5). Out of 3× 3 possible pairs of Y and (B − L)
charges only 6 do correspond to the quantum numbers of the SM matter [16]. By focussing on the flipped SO(10)
hypercharge embedding in Eq. (15), the two SM-compatible (B − L) assignments are those in Eqs. (18)–(19) (they

are related by a sign flip in T (3)
R ). In what follows we shall employ the (B − L) assignment in Eq. (19).

2. Spinor and adjoint SM singlets in flipped SO(10)

The active role of the U(1)X generator in the SM hypercharge (and B − L) identification within the flipped
SO(10) scenario has relevant consequences for model building. In first place, the SM decomposition of the SO(10)
representations change so that there are additional SM singlets both in 16H ⊕ 16H as well as in 45H .

The pattern of SM singlet components in flipped SO(10) has a simple and intuitive understanding from the SO(10)⊗
U(1)X ⊂ E6 perspective, where 16+1⊕16−1 (with the subscript indicating the U(1)X charge) are contained in 27⊕27
while 450 is a part of the E6 adjoint 78. The point is that the flipped SM hypercharge assignment makes the various
SM singlets within the complete E6 representations “migrate” among their different SO(10) sub-multiplets; namely,
the two SM singlets in the 27 of E6 that in the standard embedding (11) reside in the SO(10) singlet 1 and spinorial
16 components, in the flipped SO(10) case both happen to fall into just the single 16 ⊂ 27.

Similarly, there are two additional SM singlet directions in 450 in the flipped SO(10) scenario originating from the
16−3 ⊕ 16+3 components of the 78 of E6, accounting for a total of four SM singlets in 450.

In Tables III, IV and V we summarize the decomposition of the 10−2, 16+1 and 450 representations of SO(10) ⊗
U(1)X under the SM subgroup, in both the standard and the flipped SO(10) cases (in both the LR and SU(5)
descriptions). The pattern of the SM singlet components is emphasized in bold type.

1 By definition, a flipped variant of a specific GUT model based on a simple gauge group G is obtained by embedding the SM hypercharge
nontrivially into the G⊗ U(1) tensor product.
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which is nothing but the “standard” embedding of the SM matter in SO(10). Explicitly, Y = T (3)
R + 1

2 (B − L) in
the LR basis (while Y = Y ′ in the SU(5) picture).

The second option is characterized by

α = −1 ,β = 1
2 , γ = 0

(
α̃ = − 1

5 , β̃ = 1
5 , γ̃ = 0

)
(14)

α = −1 ,β = 1
2 , γ = 0 α = − 1

5 β = 1
5 γ = 0 (15)

which is usually denoted “flipped SU(5)” [14, 15] embedding because the SM hypercharge is spanned non-trivially on
the SU(5)⊗U(1)Z subgroup1 of SO(10), Y = 1

5 (Z−Y ′). Remarkably, from the SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)B−L

perspective this setting corresponds to a sign flip of the SU(2)R Cartan operator T 3
R, namely Y = −T 3

R + 1
2 (B − L)

which can be viewed as a π rotation in the SU(2)R algebra.
A third solution corresponds to

α = 0,β = − 1
4 , γ = 1

4

(
α̃ = − 1

5 , β̃ = − 1
20 , γ̃ = 1

4

)
(16)

α = − 1
5 β = − 1

20 γ = 1
4 (17)

denoted as “flipped SO(10)” [7–9] embedding of the SM hypercharge. Notice, in particular, the fundamental
difference between the setting (15) with γ = γ̃ = 1

4 and the two previous cases (11) and (13) where U(1)X does not
play any role.

Analogously to what found for Y , once we consider the additional anomaly-free U(1)X gauge factor, there are
three SM-compatible ways of embedding the physical (B − L) into SO(10) ⊗ U(1)X . Using the SU(5) compatible
description they are given by (see Ref. [16] for a complete set of relations)

(B − L) = 1
5 (4Y

′ + Z) , (18)
(B − L) = 1

20 (16Y
′ − Z + 5X) , (19)

(B − L) = − 1
20 (8Y

′ − 3Z − 5X) . (20)

where the first assignment is the standard B −L embedding in Eq. (5). Out of 3× 3 possible pairs of Y and (B − L)
charges only 6 do correspond to the quantum numbers of the SM matter [16]. By focussing on the flipped SO(10)
hypercharge embedding in Eq. (15), the two SM-compatible (B − L) assignments are those in Eqs. (18)–(19) (they

are related by a sign flip in T (3)
R ). In what follows we shall employ the (B − L) assignment in Eq. (19).

2. Spinor and adjoint SM singlets in flipped SO(10)

The active role of the U(1)X generator in the SM hypercharge (and B − L) identification within the flipped
SO(10) scenario has relevant consequences for model building. In first place, the SM decomposition of the SO(10)
representations change so that there are additional SM singlets both in 16H ⊕ 16H as well as in 45H .

The pattern of SM singlet components in flipped SO(10) has a simple and intuitive understanding from the SO(10)⊗
U(1)X ⊂ E6 perspective, where 16+1⊕16−1 (with the subscript indicating the U(1)X charge) are contained in 27⊕27
while 450 is a part of the E6 adjoint 78. The point is that the flipped SM hypercharge assignment makes the various
SM singlets within the complete E6 representations “migrate” among their different SO(10) sub-multiplets; namely,
the two SM singlets in the 27 of E6 that in the standard embedding (11) reside in the SO(10) singlet 1 and spinorial
16 components, in the flipped SO(10) case both happen to fall into just the single 16 ⊂ 27.

Similarly, there are two additional SM singlet directions in 450 in the flipped SO(10) scenario originating from the
16−3 ⊕ 16+3 components of the 78 of E6, accounting for a total of four SM singlets in 450.

In Tables III, IV and V we summarize the decomposition of the 10−2, 16+1 and 450 representations of SO(10) ⊗
U(1)X under the SM subgroup, in both the standard and the flipped SO(10) cases (in both the LR and SU(5)
descriptions). The pattern of the SM singlet components is emphasized in bold type.

1 By definition, a flipped variant of a specific GUT model based on a simple gauge group G is obtained by embedding the SM hypercharge
nontrivially into the G⊗ U(1) tensor product.

• Standard

• Flipped SU(5)

• Flipped SO(10)

[De Rujula, Georgi, Glashow (1980); Barr (1982)]

[Kephart, Nakagawa (1984); Rizos, Tamvakis (1988)]

• The active role of the U(1)X  generator in the SM hypercharge identification gives 
the opportunity of breaking the gauge symmetry at the renormalizable level and by 
means of only rep.’s up to the adjoint
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A. Introducing the model

1. Hypercharge embeddings in SO(10)⊗ U(1)

The so called flipped realization of the SO(10) gauge symmetry requires an additional U(1)X gauge factor in
order to provide an extra degree of freedom for the SM hypercharge identification. For a fixed embedding of the
SU(3)c ⊗ SU(2)L subgroup within SO(10), the SM hypercharge can be generally spanned over the three remaining
Cartans generating the abelian U(1)3 subgroup of the SU(10) ⊗ U(1)X/(SU(3)c ⊗ SU(2)L) coset. There are two
consistent implementations of the SM hypercharge within the SO(10) algebra (commonly denoted by standard and
flipped SU(5)), while a third one becomes available due to the presence of U(1)X .
In order to discuss the different embeddings we find useful to consider two basis for the U(1)3 subgroup. Adopting

the traditional left-right (LR) basis corresponding to the SU(3)c⊗SU(2)L⊗SU(2)R⊗U(1)B−L subalgebra of SO(10),
one can span the SM hypercharge on the generators of U(1)R ⊗ U(1)B−L ⊗ U(1)X :

Y = αT (3)
R + β(B − L) + γX. (5)

The normalization of the T (3)
R and B − L charges is chosen so that the decompositions of the spinorial and vector

representations of SO(10) w.r.t. SU(3)c ⊗ SU(2)L ⊗ U(1)R ⊗ U(1)B−L read

16 = (3, 2; 0,+ 1
3 )⊕ (3, 1;+ 1

2 ,−
1
3 )⊕ (3, 1;− 1

2 ,−
1
3 )

⊕ (1, 2; 0,−1)⊕ (1, 1;+ 1
2 ,+1)⊕ (1, 1;− 1

2 ,+1) ,
10 = (3, 1; 0,− 2

3 )⊕ (3, 1; 0,+ 2
3 ) (6)

⊕ (1, 2;+ 1
2 , 0)⊕ (1, 2;− 1

2 , 0) ,

which account for the standard B − L and T (3)
R assignments.

SO(10)⊗ U(1)X ⊃ SU(5)⊗ U(1)Z ⊗ U(1)X ⊃ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ′ ⊗ U(1)Z ⊗ U(1)X (7)

U(1)Y (8)

Alternatively, considering the SU(5) ⊗ U(1)Z subalgebra of SU(10), we identify the U(1)Y ′ ⊗ U(1)Z ⊗ U(1)X
subgroup of SO(10)⊗ U(1)X , and equivalently write:

Y = α̃Y ′ + β̃Z + γ̃X , (9)

Y = αY ′ + βZ + γX (10)

where Y ′ and Z are normalized so that the SU(3)c ⊗ SU(2)L ⊗ U(1)Y ′ ⊗ U(1)Z analogue of eqs. (6) reads:

16 = (3, 2;+ 1
6 ,+1)⊕ (3, 1;+ 1

3 ,−3)⊕ (3, 1;− 2
3 ,+1)

⊕ (1, 2;− 1
2 ,−3)⊕ (1, 1;+1,+1)⊕ (1, 1; 0,+5) ,

10 = (3, 1;− 1
3 ,−2)⊕ (3, 1;+ 1

3 ,+2) (11)
⊕ (1, 2;+ 1

2 ,−2)⊕ (1, 2;− 1
2 ,+2) .

In both cases, the U(1)X charge has been conveniently fixed to X16 = +1 for the spinorial representation (and thus
X10 = −2 and also X1 = +4 for the SO(10) vector and singlet, respectively). This is the only option to obtain an
anomaly-free U(1)X , that allows SU(10)⊗ U(1)X to be naturally embedded into E6.

It is a straightforward exercise to show that in order to accommodate the SM quark multiplets with quantum
numbers Q = (3, 2, 1

6 ), u
c = (3, 1,− 2

3 ) and dc = (3, 1,+ 1
3 ) there are only three solutions.

On the U(1)3 bases of Eq. (5) and Eq. (9) one obtains,

α = 1 ,β = 1
2 , γ = 0

(
α̃ = 1 , β̃ = 0 , γ̃ = 0

)
(12)

α = 1 ,β = 1
2 , γ = 0 α = 1 β = 0 γ = 0 (13)

Given the anomaly-free X charge matter assignment (X16 , X10 , X1) = (+1, -2, +4) 
there are only three solutions which accommodate the SM quantum numbers over 
a 16⊕10⊕1 matter representation
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• Spinor decomposition
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SO(10) SO(10)f

(3, 1;+ 1
3 )5 (3, 1;+ 1

3 )5
(1, 2;− 1

2 )5 (1, 2;+ 1
2 )5

(3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)10 (1,1;0)10 ≡ e

(1,1;0)1 (1,1;0)1 ≡ ν

TABLE V. Same as in Table III for the spinor 16-dimensional representation. The SM singlets are emphasized in bold-face and shall
be denoted, in the the SU(5) description, as e ≡ (1, 1; 0)10 and ν ≡ (1, 1; 0)1. The LR decomposition shows that e and ν belong to an
SU(2)R doublet.

LR SU(5)

SO(10) SO(10)f SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 (1,1;0)1 (1,1;0)1

(1,1;0)15 (1,1;0)15 (1,1;0)24 (1,1;0)24

(8, 1; 0)15 (8, 1; 0)15 (8, 1; 0)24 (8, 1; 0)24

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15 (3, 2;− 5
6 )24 (3, 2;+ 1

6 )24

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15 (3, 2;+ 5
6 )24 (3, 2;− 1

6 )24

(1, 3; 0)1 (1, 3; 0)1 (1, 3; 0)24 (1, 3; 0)24

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+ (3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+ (3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)1+ (1,1;0)1+ (1, 1;+1)10 (1,1;0)10

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6− (3, 2;− 1
6 )10 (3, 2;− 1

6 )10
(3, 2;− 5

6 )6− (3, 2;+ 1
6 )6− (3, 1;+ 2

3 )10 (3, 1;− 1
3 )10

(1, 1;−1)1− (1,1;0)1− (1, 1;−1)10 (1,1;0)10

TABLE VI. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for the
LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and ω−

belong to an SU(2)R triplet, while ωY is a B-L singlet.

4. The matter sector

Due to the flipped hypercharge assignment, the SM matter can no longer be fully embedded into the 16-dimensional
SO(10) spinor, as in the standard case. By inspecting Table IV one sees that a pair of SM sub-multiplets of 16
transforming as uc or ec is traded for an extra dc-like state and an extra SM singlet. The former pair is found in
the SO(10) vector and the singlet. Thus, flipping reshuffles each of the SM matter generations across 16⊕ 10⊕ 1 of
SO(10), which, by construction, is the content of the 27-dimensional fundamental representation of E6. This brings in
a set of additional degrees of freedom, in particular (1, 1, 0)16, (3, 1,+

1
3 )16, (1, 2,+

1
2 )16, (3, 1,−

1
3 )10 and (1, 2,− 1

2 )10,
where the subscript indicates their SO(10) origin. Notice that the SM “exotics” can be grouped into superheavy
vector-like pairs and thus do not appear in the low energy spectrum. Furthermore, the U(1)X anomalies associated
with each of the SO(10) ⊗ U(1)X matter multiplets cancel when summed over the entire reducible representation
161 ⊕ 10−2 ⊕ 14. An introductory discussion of the matter spectrum in this scenario is deferred to Sect. V.

B. Supersymmetric vacuum

The most general renormalizable Higgs superpotential, built-off the representations 45 ⊕ 161 ⊕ 162 ⊕ 161 ⊕ 162 is
given by

WH =
µ

2
Tr 452 + ρij16i16j + τij16i4516j , (21)

• Connected by an SU(2)R rotation

• Preserve a SM little group
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tuningstobeimposedontothescalarpotential[17]sothatallthesymmetrybreakingstepsareperformed
atthedesiredscales.

OnthetechnicalsideoneshouldidentifyalltheHiggsmultipletsneededbythebreakingpatternunder
considerationandkeepthemaccordingtothegaugesymmetrydowntothescaleoftheirVEVs.This
typicallypullsdownalargenumberofscalarsinscenarioswhere126HprovidestheB−Lbreakdown.

Ontheotherhand,onemusttakeintoaccountthattheroleof126Histwofold:inadditiontotriggering
theG1breakingitplaysarelevantroleintheYukawasector(Eq.(1))whereitprovidesthenecessary
breakingofthedownquark-chargedleptonmassdegeneracy.Forthistoworkoneneedsareasonably
largeadmixtureofthe126Hcomponentintheeffectiveelectroweakdoublets.Since(2,2,1)10canmixwith
(2,2,15)126onlybelowthePati-Salambreakingscale,bothfieldsmustbepresentatthePati-Salamlevel
(otherwisethescalardoubletmassmatrixdoesnotprovidelargeenoughcomponentsofboththesemultiplets
inthelightHiggsfields).

Notethatthesameargumentappliesalsotothe2L1R4Cintermediatestagewhenonemustretainthe
doubletcomponentof126H,namely(2,+

1
2,15)126,inorderforittoeventuallyadmixwith(2,+

1
2,1)10in

thelightHiggssector.Ontheotherhand,atthe2L2R1X3cand2L1R1X3cstages,the(minimal)survivalof
onlyonecombinationoftheφ10andφ126scalardoublets(seeTableII)iscompatiblewiththeYukawasector
constraintsbecausethedegeneracybetweenthequarkandleptonspectrahasalreadybeensmeared-outby
thePati-Salambreakdown.

Insummary,potentiallyrealisticrenormalizableYukawatexturesinsettingswithwell-separatedSO(10)
andPati-SalambreakingscalescallforanadditionalfinetuningintheHiggssector.Inthescenarioswith
126H,the10Hbidoublet(2,2,1)10,includedinRefs[6–9],mustbepairedatthe2L2R4Cscalewithanextra
(2,2,15)126scalarbidoublet(or(2,+

1
2,1)10with(2,+

1
2,15)126atthe2L1R4Cstage).Thiscanaffectthe

runningofthegaugecouplingsinchainsI,II,III,V,VI,VII,X,XIandXII.

Forthesakeofcomparisonwithpreviousstudies[6–9]weshallnotincludetheφ126multipletsinthefirst
partoftheanalysis.Rather,weshallcommentontheirrelevanceforgaugeunificationinSect.IVC.

III.TWO-LOOPGAUGERENORMALIZATIONGROUPEQUATIONS

Inthissectionwereport,inordertofixaconsistentnotation,thetwo-looprenormalizationgroupequations
(RGEs)forthegaugecouplings.WeconsideragaugegroupoftheformU(1)1⊗...⊗U(1)N⊗G1⊗...⊗GN

′,
whereGiaresimplegroups.

A.Thenon-abeliansector

Letusfocusfirstonthenon-abeliansectorcorrespondingtoG1⊗...⊗GN
′anddeferthefulltreatment

oftheeffectsduetotheextraU(1)factorstosectionIIIB.Definingt=log(µ/µ0)wewrite

dgp

dt
=gpβp(2)

wherep=1,...,N
′

isthegaugegrouplabel.Neglectingforthetimebeingtheabeliancomponents,the
β-functionsfortheG1×...×GN

′gaugecouplingsreadattwo-looplevel[18–21]:

βp=
g
2
p

(4π)2

{
−

11

3
C2(Gp)+

4

3
κS2(Fp)+

1

3
ηS2(Sp)−

2κ

(4π)2Y4(Fp)

+
g
2
p

(4π)2

[
−

34

3
(C2(Gp))

2
+

(
4C2(Fp)+

20

3
C2(Gp)

)
κS2(Fp)+

(
4C2(Sp)+

2

3
C2(Gp)

)
ηS2(Sp)

]

+
g2

q

(4π)24
[
κC2(Fq)S2(Fp)+ηC2(Sq)S2(Sp)

]}

whereκ=1,
1
2forDiracandWeylfermionsrespectively.Correspondingly,η=1,

1
2forcomplexandreal

scalarfields.Thesumoverq$=pcorrespondingtocontributionstoβpfromtheothergaugesectorslabelled
byqisunderstood.GivenafermionForascalarSfieldthattransformsaccordingtotherepresentation
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SO(10) SO(10)f

(3, 1;+ 1
3 )5 (3, 1;+ 1

3 )5
(1, 2;− 1

2 )5 (1, 2;+ 1
2 )5

(3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)10 (1,1;0)10 ≡ e

(1,1;0)1 (1,1;0)1 ≡ ν

TABLE V. Same as in Table III for the spinor 16-dimensional representation. The SM singlets are emphasized in bold-face and shall
be denoted, in the the SU(5) description, as e ≡ (1, 1; 0)10 and ν ≡ (1, 1; 0)1. The LR decomposition shows that e and ν belong to an
SU(2)R doublet.

LR SU(5)

SO(10) SO(10)f SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 (1,1;0)1 (1,1;0)1

(1,1;0)15 (1,1;0)15 (1,1;0)24 (1,1;0)24

(8, 1; 0)15 (8, 1; 0)15 (8, 1; 0)24 (8, 1; 0)24

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15 (3, 2;− 5
6 )24 (3, 2;+ 1

6 )24

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15 (3, 2;+ 5
6 )24 (3, 2;− 1

6 )24

(1, 3; 0)1 (1, 3; 0)1 (1, 3; 0)24 (1, 3; 0)24

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+ (3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+ (3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)1+ (1,1;0)1+ (1, 1;+1)10 (1,1;0)10

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6− (3, 2;− 1
6 )10 (3, 2;− 1

6 )10
(3, 2;− 5

6 )6− (3, 2;+ 1
6 )6− (3, 1;+ 2

3 )10 (3, 1;− 1
3 )10

(1, 1;−1)1− (1,1;0)1− (1, 1;−1)10 (1,1;0)10

TABLE VI. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for the
LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and ω−

belong to an SU(2)R triplet, while ωY is a B-L singlet.

4. The matter sector

Due to the flipped hypercharge assignment, the SM matter can no longer be fully embedded into the 16-dimensional
SO(10) spinor, as in the standard case. By inspecting Table IV one sees that a pair of SM sub-multiplets of 16
transforming as uc or ec is traded for an extra dc-like state and an extra SM singlet. The former pair is found in
the SO(10) vector and the singlet. Thus, flipping reshuffles each of the SM matter generations across 16⊕ 10⊕ 1 of
SO(10), which, by construction, is the content of the 27-dimensional fundamental representation of E6. This brings in
a set of additional degrees of freedom, in particular (1, 1, 0)16, (3, 1,+

1
3 )16, (1, 2,+

1
2 )16, (3, 1,−

1
3 )10 and (1, 2,− 1

2 )10,
where the subscript indicates their SO(10) origin. Notice that the SM “exotics” can be grouped into superheavy
vector-like pairs and thus do not appear in the low energy spectrum. Furthermore, the U(1)X anomalies associated
with each of the SO(10) ⊗ U(1)X matter multiplets cancel when summed over the entire reducible representation
161 ⊕ 10−2 ⊕ 14. An introductory discussion of the matter spectrum in this scenario is deferred to Sect. V.

B. Supersymmetric vacuum

The most general renormalizable Higgs superpotential, built-off the representations 45 ⊕ 161 ⊕ 162 ⊕ 161 ⊕ 162 is
given by

WH =
µ

2
Tr 452 + ρij16i16j + τij16i4516j , (21)Renormalizable superpotential

Imposing D- and F-flatness at the GUT scale: 

4

2×
(
16H ⊕ 16H

)
⊕ 45H (28)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG & MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

In this paper, we point out that all these issues are alleviated if one considers a flipped variant of the SUSY SO(10)
unification. In particular, we shall show that the flipped SO(10) ⊗ U(1) scenario [7–9] offers an attractive option to
break the gauge symmetry to the SM at the renormalizable level by means of a quite simple Higgs sector, namely a
couple of SO(10) spinors 161,2 ⊕ 161,2 and one adjoint.

Within the extended SO(10) ⊗ U(1) gauge algebra one finds in general three inequivalent embeddings of the SM
hypercharge. In addition to the two solutions with the hypercharge stretching over the SU(5) or the SU(5) ⊗ U(1)
subgroups of SO(10) (respectively dubbed as the “standard” and “flipped” SU(5) embeddings), there is a third,
“flipped” SO(10), solution inherent to the SO(10)⊗ U(1) case, with a non-trivial projection of the SM hypercharge
onto the U(1) factor.

Whilst the difference between the standard and the flipped SU(5) embedding is semantical from the SO(10) point
of view, the flipped SO(10) case is qualitatively very different. In particular, the symmetry-breaking “power” of the
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6 )6−
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6 )6−

(1, 1;−1)1− (1,1;0)1− ≡ ω−

TABLE VII. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for
the LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and
ω− belong to an SU(2)R triplet, while ωY is a B-L singlet.

where i, j = 1, 2 and the notation is explained in Appendix A1. Without loss of generality we can take µ real by
a global phase redefinition, while τ (or ρ) can be diagonalized by a bi-unitary transformation acting on the flavor
indices of the 16 and the 16. Let us choose, for instance, τij = τiδij , with τi real. We label the SM-singlets contained
in the 16 in the following way: e ≡ (1, 1; 0)10 (only for flipped SO(10)) and ν ≡ (1, 1; 0)1 (for both the embeddings).

By plugging in the SM-singlet VEVs ωR, ωY , ω+, ω−, e1,2, e1,2, ν1,2 and ν1,2 (cf. again Appendix A1), the
superpotential reads

〈WH〉 = µ
(
2ω2

R + 3ω2
Y + 4ω−ω+

)

+ ρ11 (e1e1 + ν1ν1) + ρ21 (e2e1 + ν2ν1)
+ ρ12 (e1e2 + ν1ν2) + ρ22 (e2e2 + ν2ν2)

+ τ1

[
−ω−e1ν1 − ω+ν1e1 −

ωR√
2
(e1e1 − ν1ν1)

+
3

2

ωY√
2
(e1e1 + ν1ν1)

]

+ τ2

[
−ω−e2ν2 − ω+ν2e2 −

ωR√
2
(e2e2 − ν2ν2)

+
3

2

ωY√
2
(e2e2 + ν2ν2)

]
. (22)

Having in mind a low energy SUSY breaking scenario, we must require that the GUT gauge symmetry breaking
preserves supersymmetry. In Appendix A 2 we work out the relevant D- and F-term equations. We find that the
existence of a nontrivial vacuum requires ρ (and τ for consistency) to be hermitian matrices. This is a consequence
of the fact that D-term flatness for the flipped SO(10) embedding implies 〈16i〉 =

〈
16i

〉∗
(Eq. (A31)). With this
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16⊕ 16
This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case

the neutrino masses can be generated at the renormalizable level by the term 162F 126
∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [? ], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [? ? ? ] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

• A nontrivial vacuum requires   and   to be hermitian
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within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ' MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.
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FIG. 1. Sample picture of gauge coupling unification in the E6 embedded SO(10)⊗ U(1)X model.

SO(10) SO(10)f

16F (Dc ⊕ L)5 ⊕ (Uc ⊕Q⊕ Ec)10 ⊕ (Nc)1 (Dc ⊕ Λc)5 ⊕ (∆c ⊕Q⊕ S)10 ⊕ (Nc)1

10F (∆⊕ Λc)5 ⊕ (∆c ⊕ Λ)5 (∆⊕ L)5 ⊕ (Uc ⊕ Λ)5
1F (S)1 (Ec)1

〈16H〉 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ sH)10 ⊕ (νH)1〈
16H

〉
(0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ sH)10 ⊕ (νH)1

TABLE XII. SM decomposition of SO(10) representations relevant for the Yukawa sector in the standard and flipped hypercharge
embedding. In the SO(10)f case B − L is assigned according to Eq. (53). A self-explanatory SM notation is used, with the subscripts
outside the brackets labelling the SU(5) origin. The SU(2)L doublets decompose as Q = (U, D), L = (N, E), Λ = (Λ0, Λ−) and
Λc = (Λc+, Λc0). Acordingly, 〈Hu〉 = (0, vu) and 〈Hd〉 = (vd, 0). The D-flatness constraint on the SM-singlet VEVs, sH and νH , is
taken into account.

A. Yukawa sector of the flipped SO(10) model

Considering for the purpose of the present discussion just one pair of spinor Higgs multiplts and imposing a Z2

matter-parity, negative for matter fields (F ) and positive for Higgs fields (H), the Yukawa superpotential reads

WY = YU 16F 10F 16H +
1

MP

[
YE 10F 1F 16H16H + YD 16F 16F 16H16H

]
, (104)

where we neglect O(M−2
P ) operators. Notice (see Table XIII) that because of the flipped embedding the up-quarks

receive mass at the renormalizable level, while all the other fermion masses are generated through Planck-suppressed
effective operators.

1. Mass matrices

In order to avoid 1/MP -pending factors we introduce the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and ŝH ≡ sH/MP .
The mass matrices (at the Mf scale) for the matter fields sharing the same unbroken SU(3)c ⊗ U(1)Q quantum
numbers can be extracted with the help of Table XIII. One readily obtains

Mu = YUvu , (105)

Md =

(
YDν̂Hvd YD ŝHvd

YUsH YUνH

)
, (106)

Me =

(
YE ν̂Hvd YUsH

YE ŝHvd YUνH

)
, (107)

21

Ω2/MP > Mf (98)

scale, while the masses of the SM-singlet neutrino states which enter the ”extended” type-I seesaw formula are
governed by the 〈27〉 ∼ Mf (see the discussion in Sect. V).

D. A unified E6 scenario

We examine the plausibility of the two-step gauge unification scenario discussed in the previous subsection. We
consider here just a simplified description that neglects thresholds effects. As a first quantitative estimate of the
effects of the running on the SO(10)f couplings let us introduce the quantity

∆(Mf ) ≡
α−1
X̂

(Mf )− α−1
10 (Mf )

α−1
E

=
1

α−1
E

bX̂ − b10
2π

log
ME

Mf
, (99)

whereME is the E6 unification scale and αE is the E6 gauge coupling. The U(1)X charge has been properly normalized
to X̂ = X/

√
24. The one-loop beta coefficients for the superfield content

45H ⊕ 2×
(
16H ⊕ 16H

)

3× (16F ⊕ 10F ⊕ 1F )
45G ⊕ 1G (100)

are found to be b10 = 1 and bX̂ = 67/24.
Taking for the sake of the estimate α−1

E ≈ 25 and ME/Mf ! 102 we obtain ∆(Mf ) ! 5%
In order to match the SO(10)f couplings with the measured SM couplings, we consider as a typical setup the two-

loop MSSM gauge running with a 1 TeV SUSY scale. The (one-loop) matching of the non abelian gauge couplings
(in dimensional reduction) at the scale Mf reads

α−1
10 (Mf ) = α−1

2 (Mf ) = α−1
3 (Mf ) , (101)

while for the properly normalized hypercharge Ŷ one obtains

α−1
Ŷ

(Mf ) =
(
α̂2 + β̂2

)
α−1
10 (Mf ) + γ̂2α−1

X̂
(Mf ) . (102)

where we have implemented the relation among the properly normalized U(1) generators (see Eq. (49))

Ŷ = α̂Ŷ ′ + β̂Ẑ + γ̂X̂ , (103)

with {α̂, β̂, γ̂} = {− 1
5 ,−

1
5

√
3
2 ,

3√
10
}.

The result of this simple exercize is reported in Fig. 1. Keeping always in mind that detailed threshold effects are
neglected, it is nevertheless interesting to observe the overall consistency emerging from the unified effective flipped
SO(10) picture.

V. TOWARDS A REALISTIC FLAVOR

The aim of this section is an introductory discussion of the main features and of the possible issues arising in the
Yukawa sector of a flipped SO(10) ⊗ U(1)X model. In order to keep the discussion as simple as possible we shall
consider a simplified Higgs content with just one pair of 16H ⊕ 16H . As a useful and visually effective complement of
the tables given in Sect. III, we summarize in Table XII the SM-decomposition of the representations relevant to the
Yukawa sector.

Q = (U, D) L = (N, E) Λ = (Λ0, Λ−) Λc = (Λc+, Λc0) 〈Hu〉 = (0, vu) 〈Hd〉 = (vd, 0) (104)

For analogies between this discussion and other studies in E6 and standard SO(10) models with an extended matter
sector see Refs. [27, 28] and [29, 30] respectively. For a scenario employing flipped SO(10)⊗U(1) (with an additional
anomalous U(1)) see Ref. [10].

Simplified Yukawa sector with just one pair of Higgs spinors + Z2 matter parity
26

SO(10) SO(10)f

16F (Dc ⊕ L)5 ⊕ (Uc ⊕Q⊕ Ec)10 ⊕ (Nc)1 (Dc ⊕ Λc)5 ⊕ (∆c ⊕Q⊕ S)10 ⊕ (Nc)1

10F (∆⊕ Λc)5 ⊕ (∆c ⊕ Λ)5 (∆⊕ L)5 ⊕ (Uc ⊕ Λ)5
1F (S)1 (Ec)1

〈16H〉 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ eH)10 ⊕ (νH)1〈
16H

〉
(0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ eH)10 ⊕ (νH)1

TABLE XIV. SM decomposition of SO(10) representations relevant for the Yukawa sector in the standard and flipped hypercharge
embedding. In the SO(10)f case B − L is assigned according to Eq. (55). A self-explanatory SM notation is used, with the subscripts
outside the brackets labelling the SU(5) origin. The SU(2)L doublets decompose as Q = (U, D), L = (N, E), Λ = (Λ0, Λ−) and
Λc = (Λc+, Λc0). Acordingly, 〈Hu〉 = (0, vu) and 〈Hd〉 = (vd, 0). The D-flatness constraint on the SM-singlet VEVs, sH and νH , is
taken into account.

16F 10F 〈16H〉 10F 1F
〈
16H

〉 〈
16H

〉
16F 16F

〈
16H

〉 〈
16H

〉

(1) 10F 5F
〈
5H

〉
⊃ (QUc + SΛ) 〈Hu〉 (2) 5F 1F 〈5H〉

〈
1H

〉
⊃ ΛEc 〈Hd〉 νH (1) 1F 1F

〈
1H

〉 〈
1H

〉
⊃ NcNcν2

H

(1) 1F 5F
〈
5H

〉
⊃ NcL 〈Hu〉 (2) 5F 1F

〈
10H

〉
〈5H〉 ⊃ LEc 〈Hd〉 sH (1) 10F 10F

〈
10H

〉 〈
10H

〉
⊃ SSs2H

(1) 5F 5F 〈1H〉 ⊃ (Dc∆+Λ cL)νH (4) 10F 1F
〈
10H

〉 〈
1H

〉
⊃ SNcsHνH

(1) 5F 5F 〈10H〉 ⊃ ΛcΛsH (1) 5F 5F 〈5H〉 〈5H〉 ⊃ ΛcΛc 〈Hd〉 〈Hd〉
(1) 10F 5F 〈10H〉 ⊃ ∆c∆sH (4) 10F 5F

〈
10H

〉
〈5H〉 ⊃ (ΛcS +QDc) 〈Hd〉 sH

(2) 10F 10F 〈5H〉
〈
1H

〉
⊃ Q∆c 〈Hd〉 νH

(4) 5F 1F 〈5H〉
〈
1H

〉
⊃ ΛcNc 〈Hd〉 νH

TABLE XV. Decomposition under flipped SU(5) and the SM of the invariants in Eq. (142). The number in round brackets stands for
the multiplicity of the invariant. The flipped SU(5) invariants 510F 11F

〈
10H

〉 〈
10H

〉
and 516F 116F

〈
10H

〉 〈
10H

〉
exhibit no SM invariant.

VI. TOWARDS A REALISTIC FLAVOR (sH → eH)

The aim of this section is an introductory discussion of the main features and of the possible issues arising in the
Yukawa sector of a flipped SO(10) ⊗ U(1)X model. In order to keep the discussion as simple as possible we shall
consider a simplified Higgs content with just one pair of 16H ⊕ 16H . As a useful and visually effective complement
of the tables given in Sect. III, we summarize in Table XIV the SM-decomposition of the representations relevant to
the Yukawa sector.

Q = (U, D) L = (N, E) Λ = (Λ0, Λ−) Λc = (Λc+, Λc0) 〈Hu〉 = (0, vu) 〈Hd〉 = (vd, 0) (141)

For analogies between this discussion and other studies in E6 and standard SO(10) models with an extended matter
sector see Refs. [27, 28] and [29, 30] respectively. For a scenario employing flipped SO(10)⊗U(1) (with an additional
anomalous U(1)) see Ref. [10].

A. Yukawa sector of the flipped SO(10) model

Considering for the purpose of the present discussion just one pair of spinor Higgs multiplts and imposing a Z2

matter-parity, negative for matter fields (F ) and positive for Higgs fields (H), the Yukawa superpotential reads

WY = YU 16F 10F 16H +
1

MP

[
YE 10F 1F 16H16H + YD 16F 16F 16H16H

]
, (142)

where we neglect O(M−2
P ) operators. Notice (see Table XV) that because of the flipped embedding the up-quarks

receive mass at the renormalizable level, while all the other fermion masses are generated through Planck-suppressed
effective operators.

The flipped SO(10) embedding offers also the possibility of triggering the EW 
symmetry breaking without a 10H 

• The SM fermions span necessarily over a reducible 16⊕10⊕1 matter rep.

• All the fermions, but the up-quarks, need Planck-suppressed contributions

4

2×
(
16H ⊕ 16H

)
⊕ 45H (28)

α− #= 0 and/or Φν #= Φe (29)

r1,2 α1,2 (30)

ρ τ (31)

Ω (32)

M2
E/MP > Mf (33)

16H16H54H or 16H16H54H (34)

tanβ ∼ 1 (35)

45H ⊕ 16H ⊕ 16H (36)

α1 = α2 and φν1 − φν2 = φe1 − φe2 (37)

α1 #= α2 and/or φν1 − φν2 #= φe1 − φe2 (38)

16⊕ 16

78 ≡ 450 ⊕ 16−3 ⊕ 16+3 ⊕ 10 (39)

27 ≡ 16+1 ⊕ 10−2 ⊕ 1+4 (40)

tanβ ∼ 1 (41)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

• The top/bottom hierarchy is due to an Mf /MP ∼ 10-2  factor
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D. A unified E6 scenario

We examine the plausibility of the two-step gauge unification scenario discussed in the previous subsection. We
consider here just a simplified description that neglects thresholds effects. As a first quantitative estimate of the
effects of the running on the SO(10)f couplings let us introduce the quantity

∆(Mf ) ≡
α−1
X̂

(Mf )− α−1
10 (Mf )

α−1
E

=

1

α−1
E

bX̂ − b10
2π

log
ME

Mf
, (58)

whereME is the E6 unification scale and αE is the E6 gauge coupling. The U(1)X charge has been properly normalized
to X̂ = X/

√
24. The one-loop beta coefficients for the superfield content 45H ⊕ 2×

(
16H ⊕ 16H

)
⊕ 3× (16F ⊕ 10F ⊕

1F )⊕ 45G are found to be b10 = 1 and bX̂ = 67/24.
Taking for the sake of the estimate α−1

E ≈ 25 and ME/Mf < 102 we obtain ∆(Mf ) < 0.05
In order to match the SO(10)f couplings with the measured SM couplings, we consider as a typical setup the two-

loop MSSM gauge running with a 1 TeV SUSY scale. The (one-loop) matching of the non abelian gauge couplings
(in dimensional reduction) at the scale Mf reads

α−1
10 (Mf ) = α−1

2 (Mf ) = α−1
3 (Mf ) , (59)

while for the properly normalized hypercharge Ŷ one obtains

α−1
Ŷ

(Mf ) =
(
α̂2 + β̂2

)
α−1
10 (Mf ) + γ̂2α−1

X̂
(Mf ) . (60)

where we have implemented the relation among the properly normalized U(1) generators (see Eq. (10))

Ŷ = α̂Ŷ ′ + β̂Ẑ + γ̂X̂ , (61)

with {α̂, β̂, γ̂} = {− 1
5 ,−

1
5

√
3
2 ,

3√
10
}.

The result of this simple exercize is reported in Fig. 1. Keeping always in mind that detailed threshold effects are
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FIG. 1. Sample picture of gauge coupling unification in the E6 embedded SO(10)⊗ U(1)X model.

neglected, it is nevertheless interesting to observe the overall consistency emerging from the unified effective flipped
SO(10) picture.
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the SM-decomposition of the representations relevant to
the Yukawa sector.

For analogies between this discussion and other studies
in E6 and standard SO(10) models with an extended
matter sector see Refs. [27, 28] and [29, 30] respectively.
For a scenario employing flipped SO(10)⊗U(1) (with an
additional anomalous U(1)) see Ref. [10].

A. Yukawa sector of the flipped SO(10) model

Considering for the purpose of the present discussion
just one pair of spinor Higgs multiplts and imposing a Z2

matter-parity, negative for matter fields (F ) and positive
for Higgs fields (H), the Yukawa superpotential reads

WY = YU16F 10F 16H

+
1

MP

[
YE10F 1F 16H16H + YD16F 16F 16H16H

]
, (62)

where we neglect O(M−2
P ) operators. Notice (see Ta-

ble XI) that because of the flipped embedding the up-
quarks receive mass at the renormalizable level, while all
the other fermion masses are generated through Planck-
suppressed effective operators.

1. Mass matrices

In order to avoid 1/MP -pending factors we introduce
the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and ŝH ≡
sH/MP . The mass matrices (at the Mf scale) for the
matter fields sharing the same unbroken SU(3)c⊗U(1)Q
quantum numbers can be extracted with the help of Ta-

• Two-loop MSSM with TeV scale SUSY 
(no GUT-scale thresholds) 

The flipped SO(10)⊗U(1) model can be naturally embedded in an E6 GUT with 
one       and two pairs of                in the Higgs sector
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IV. MINIMAL E6 EMBEDDING

The natural and minimal unified embedding of the flipped SO(10) ⊗ U(1) model is E6 with one 78H and two
pairs of 27H + 27H in the Higgs sector. The three matter families are contained in three 27F chiral superfields. The
decomposition of the 27 and 78 representations under the SM quantum numbers is detailed in Tables VIII, IX, X and
XI, according to the different hypercharge embeddings.

SU(5) SU(5)f SO(10)f

(3, 1;+ 1
3 )516 (3, 1;− 2

3 )516 (3, 1;+ 1
3 )516

(1, 2;− 1
2 )516 (1, 2;− 1

2 )516 (1, 2;+ 1
2 )516

(3, 2;+ 1
6 )1016 (3, 2;+ 1

6 )1016 (3, 2;+ 1
6 )1016

(3, 1;− 2
3 )1016 (3, 1;+ 1

3 )1016 (3, 1;+ 1
3 )1016

(1, 1;+1)1016 (1, 1; 0)1016 (1, 1; 0)1016
(1, 1; 0)116 (1, 1;+1)116 (1, 1; 0)116

(3, 1;− 1
3 )510 (3, 1;− 1

3 )510 (3, 1;− 1
3 )510

(1, 2;+ 1
2 )510 (1, 2;− 1

2 )510 (1, 2;− 1
2 )510

(3, 1;+ 1
3 )510 (3, 1;+ 1

3 )510 (3, 1;− 2
3 )510

(1, 2;− 1
2 )510 (1, 2;+ 1

2 )510 (1, 2;− 1
2 )510

(1, 1; 0)11 (1, 1; 0)11 (1, 1;+1)11

TABLE VIII. Decomposition of the fundamental representation 27 of E6 under SU(3)c ⊗ SU(2)L ⊗ U(1)Y , according to the three
SM-compatible different embeddings of the hypercharge. The subscripts keep track of the SU(5) and SO(10) origin.

SU(5) SU(5)f SO(10)f

(3, 2;+ 1
6 )416 (3, 2;+ 1

6 )416 (3, 2;+ 1
6 )416

(1, 2;− 1
2 )416 (1, 2;− 1

2 )416 (1, 2;+ 1
2 )416

(3, 1;+ 1
3 )4+16

(3, 1;− 2
3 )4+16

(3, 1;+ 1
3 )4+16

(3, 1;− 2
3 )4−16

(3, 1;+ 1
3 )4−16

(3, 1;+ 1
3 )4−16

(1, 1;+1)4+16
(1, 1; 0)4+16

(1, 1; 0)4+16
(1, 1; 0)4−16

(1, 1;+1)4−16
(1, 1; 0)4−16

(3, 1;− 1
3 )610 (3, 1;− 1

3 )610 (3, 1;− 1
3 )610

(3, 1;+ 1
3 )610 (3, 1;+ 1

3 )610 (3, 1;− 2
3 )610

(1, 2;+ 1
2 )1+10

(1, 2;− 1
2 )1+10

(1, 2;− 1
2 )1+10

(1, 2;− 1
2 )1−10

(1, 2;+ 1
2 )1−10

(1, 2;− 1
2 )1−10

(1, 1; 0)11 (1, 1; 0)11 (1, 1;+1)11

TABLE IX. same as in Fig. VIII, where the subscripts keep track of the SU(4)C and SO(10) origin. The symbols ± refer to the

eigenvalues of T
(3)
R .

In analogy with the flipped SO(10) discussion, we shall label the SM-singlets contained in the 27 as e ≡ (1, 1; 0)11
and ν ≡ (1, 1; 0)116 . As we are going to show, the little group of a supersymmetric

〈
78⊕ 271 ⊕ 272 ⊕ 271 ⊕ 272

〉

vacuum is SU(5). This is just a consequence of the larger E6 algebra. In order to obtain a SM vacuum, we need
to resort to a NR scenario that allows for a disentanglement of the 〈78H〉 directions, and consistently for a flipped
SO(10)⊗ U(1) intermediate stage. We shall make the case for an E6 gauge symmetry broken near the Planck scale,
leaving an effective flipped SO(10) scenario down to the 1016 GeV.

A. Y and B − L into E6

Interpreting the different possible definitions of the SM hypercharge in terms of the E6 maximal subalgebra SU(3)c⊗
SU(3)L ⊗ SU(3)R, one finds that the three assignments in Eqs. (12)–(16) are each orthogonal to the three possible
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In analogy with the flipped SO(10) discussion, we shall label the SM-singlets contained in the 27 as e ≡ (1, 1; 0)11
and ν ≡ (1, 1; 0)116 . As we are going to show, the little group of a supersymmetric

〈
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〉

vacuum is SU(5). This is just a consequence of the larger E6 algebra. In order to obtain a SM vacuum, we need
to resort to a NR scenario that allows for a disentanglement of the 〈78H〉 directions, and consistently for a flipped
SO(10)⊗ U(1) intermediate stage. We shall make the case for an E6 gauge symmetry broken near the Planck scale,
leaving an effective flipped SO(10) scenario down to the 1016 GeV.

A. Y and B − L into E6

Interpreting the different possible definitions of the SM hypercharge in terms of the E6 maximal subalgebra SU(3)c⊗
SU(3)L ⊗ SU(3)R, one finds that the three assignments in Eqs. (12)–(16) are each orthogonal to the three possible

SUSY vacuum

• The little group is SU(5) for misaligned                pairs 
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3 )516 (3, 1;+ 1
3 )516

(1, 2;− 1
2 )516 (1, 2;− 1

2 )516 (1, 2;+ 1
2 )516

(3, 2;+ 1
6 )1016 (3, 2;+ 1

6 )1016 (3, 2;+ 1
6 )1016

(3, 1;− 2
3 )1016 (3, 1;+ 1

3 )1016 (3, 1;+ 1
3 )1016

(1, 1;+1)1016 (1, 1; 0)1016 (1, 1; 0)1016
(1, 1; 0)116 (1, 1;+1)116 (1, 1; 0)116

(3, 1;− 1
3 )510 (3, 1;− 1

3 )510 (3, 1;− 1
3 )510

(1, 2;+ 1
2 )510 (1, 2;− 1

2 )510 (1, 2;− 1
2 )510

(3, 1;+ 1
3 )510 (3, 1;+ 1

3 )510 (3, 1;− 2
3 )510

(1, 2;− 1
2 )510 (1, 2;+ 1

2 )510 (1, 2;− 1
2 )510

(1, 1; 0)11 (1, 1; 0)11 (1, 1;+1)11

TABLE VIII. Decomposition of the fundamental representation 27 of E6 under SU(3)c ⊗ SU(2)L ⊗ U(1)Y , according to the three
SM-compatible different embeddings of the hypercharge. The subscripts keep track of the SU(5) and SO(10) origin.

SU(5) SU(5)f SO(10)f

(3, 2;+ 1
6 )416 (3, 2;+ 1

6 )416 (3, 2;+ 1
6 )416

(1, 2;− 1
2 )416 (1, 2;− 1

2 )416 (1, 2;+ 1
2 )416

(3, 1;+ 1
3 )4+16

(3, 1;− 2
3 )4+16

(3, 1;+ 1
3 )4+16

(3, 1;− 2
3 )4−16

(3, 1;+ 1
3 )4−16

(3, 1;+ 1
3 )4−16

(1, 1;+1)4+16
(1, 1; 0)4+16

(1, 1; 0)4+16
(1, 1; 0)4−16

(1, 1;+1)4−16
(1, 1; 0)4−16

(3, 1;− 1
3 )610 (3, 1;− 1

3 )610 (3, 1;− 1
3 )610

(3, 1;+ 1
3 )610 (3, 1;+ 1

3 )610 (3, 1;− 2
3 )610

(1, 2;+ 1
2 )1+10

(1, 2;− 1
2 )1+10

(1, 2;− 1
2 )1+10

(1, 2;− 1
2 )1−10

(1, 2;+ 1
2 )1−10

(1, 2;− 1
2 )1−10

(1, 1; 0)11 (1, 1; 0)11 (1, 1;+1)11

TABLE IX. same as in Fig. VIII, where the subscripts keep track of the SU(4)C and SO(10) origin. The symbols ± refer to the

eigenvalues of T
(3)
R .

In analogy with the flipped SO(10) discussion, we shall label the SM-singlets contained in the 27 as e ≡ (1, 1; 0)11
and ν ≡ (1, 1; 0)116 . As we are going to show, the little group of a supersymmetric

〈
78⊕ 271 ⊕ 272 ⊕ 271 ⊕ 272

〉

vacuum is SU(5). This is just a consequence of the larger E6 algebra. In order to obtain a SM vacuum, we need
to resort to a NR scenario that allows for a disentanglement of the 〈78H〉 directions, and consistently for a flipped
SO(10)⊗ U(1) intermediate stage. We shall make the case for an E6 gauge symmetry broken near the Planck scale,
leaving an effective flipped SO(10) scenario down to the 1016 GeV.

A. Y and B − L into E6

Interpreting the different possible definitions of the SM hypercharge in terms of the E6 maximal subalgebra SU(3)c⊗
SU(3)L ⊗ SU(3)R, one finds that the three assignments in Eqs. (12)–(16) are each orthogonal to the three possible

• Needs effective adjoint interactions near the Planck scale in order to reach the SM

15

SU(5) SU(5)f SO(10)f

(1, 1; 0)11 (1, 1; 0)11 (1, 1; 0)11

(1, 1; 0)1545 (1, 1; 0)1545 (1, 1; 0)1545
(8, 1; 0)1545 (8, 1; 0)1545 (8, 1; 0)1545
(3, 1;+ 2

3 )1545 (3, 1;+ 2
3 )1545 (3, 1;− 1

3 )1545
(3, 1;− 2

3 )1545 (3, 1;− 2
3 )1545 (3, 1;+ 1

3 )1545
(1, 3; 0)145 (1, 3; 0)145 (1, 3; 0)145
(1, 1;+1)1+45

(1, 1;−1)1+45
(1, 1; 0)1+45

(1, 1; 0)1045 (1, 1; 0)1045 (1, 1; 0)1045
(1, 1;−1)1−45

(1, 1;+1)1−45
(1, 1; 0)1−45

(3, 2;+ 1
6 )6+45

(3, 2;− 5
6 )6+45

(3, 2;+ 1
6 )6+45

(3, 2;− 5
6 )6−45

(3, 2;+ 1
6 )6−45

(3, 2;+ 1
6 )6−45

(3, 2;+ 5
6 )6+45

(3, 2;− 1
6 )6+45

(3, 2;− 1
6 )6+45

(3, 2;− 1
6 )6−45

(3, 2;+ 5
6 )6−45

(3, 2;− 1
6 )6−45

(3, 2;+ 1
6 )416 (3, 2;+ 1

6 )416 (3, 2;− 5
6 )416

(1, 2;− 1
2 )416 (1, 2;− 1

2 )416 (1, 2;− 1
2 )416

(3, 1;+ 1
3 )4+16

(3, 1;− 2
3 )4+16

(3, 1;− 2
3 )4+16

(3, 1;− 2
3 )4−16

(3, 1;+ 1
3 )4−16

(3, 1;− 2
3 )4−16

(1, 1;+1)4+16
(1, 1; 0)4+16

(1, 1;−1)4+16
(1, 1; 0)4−16

(1, 1;+1)4−16
(1, 1;−1)4−16

(3, 2;− 1
6 )416 (3, 2;− 1

6 )416 (3, 2;+ 5
6 )416

(1, 2;+ 1
2 )416 (1, 2;+ 1

2 )416 (1, 2;+ 1
2 )416

(3, 1;− 1
3 )4−

16

(3, 1;+ 2
3 )4−

16

(3, 1;+ 2
3 )4−

16

(3, 1;+ 2
3 )4+

16

(3, 1;− 1
3 )4+

16

(3, 1;+ 2
3 )4+

16

(1, 1;−1)4−
16

(1, 1; 0)4−
16

(1, 1;+1)4−
16

(1, 1; 0)4+
16

(1, 1;−1)4+
16

(1, 1;+1)4+
16

TABLE XI. Same as in Table ?? for the 78 representation.

For the standard hypercharge embedding, the B − L assignment in Eq. (??) reads

B − L = 2√
3

(
T (8)
L + T (8)

R

)
,

= 2√
3
T (8)
L − T (3)

E − 1√
3
T (8)
E , (41)

while the B − L assignment in Eq. (??), consistent with the flipped SO(10) embedding of the hypercharge, reads

B − L = 2√
3
T (8)
L − T (3)

R − 1√
3
T (8)
R ,

= 2√
3

(
T (8)
L + T (8)

E

)
. (42)

B. The E6 vacuum manifold

The most general renormalizable Higgs superpotential, built-off the representations 78⊕ 271 ⊕ 272 ⊕ 271 ⊕ 272, is
given by

WH =
µ

2
Tr 782 + ρij27i27j + τij27i7827j + αijk27i27j27k + βijk27i27j27k , (43)

where i, j = 1, 2. The couplings αijk and βijk are totally symmetric in ijk, so that each one of them contains four
complex parameters. Without loss of generality we can take µ real by a phase redefinition of the superpotential, while
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SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 ≡ ωR

(1,1;0)15 (1,1;0)15 ≡ ωY

(8, 1; 0)15 (8, 1; 0)15

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15

(1, 3; 0)1 (1, 3; 0)1

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+

(1, 1;+1)1+ (1,1;0)1+ ≡ ω+

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6−

(3, 2;− 5
6 )6− (3, 2;+ 1

6 )6−

(1, 1;−1)1− (1,1;0)1− ≡ ω−

TABLE VII. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for
the LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and
ω− belong to an SU(2)R triplet, while ωY is a B-L singlet.

where i, j = 1, 2 and the notation is explained in Appendix A1. Without loss of generality we can take µ real by
a global phase redefinition, while τ (or ρ) can be diagonalized by a bi-unitary transformation acting on the flavor
indices of the 16 and the 16. Let us choose, for instance, τij = τiδij , with τi real. We label the SM-singlets contained
in the 16 in the following way: e ≡ (1, 1; 0)10 (only for flipped SO(10)) and ν ≡ (1, 1; 0)1 (for both the embeddings).

By plugging in the SM-singlet VEVs ωR, ωY , ω+, ω−, e1,2, e1,2, ν1,2 and ν1,2 (cf. again Appendix A1), the
superpotential reads

〈WH〉 = µ
(
2ω2

R + 3ω2
Y + 4ω−ω+

)

+ ρ11 (e1e1 + ν1ν1) + ρ21 (e2e1 + ν2ν1)
+ ρ12 (e1e2 + ν1ν2) + ρ22 (e2e2 + ν2ν2)

+ τ1

[
−ω−e1ν1 − ω+ν1e1 −

ωR√
2
(e1e1 − ν1ν1)

+
3

2

ωY√
2
(e1e1 + ν1ν1)

]

+ τ2

[
−ω−e2ν2 − ω+ν2e2 −

ωR√
2
(e2e2 − ν2ν2)

+
3

2

ωY√
2
(e2e2 + ν2ν2)

]
. (22)

Having in mind a low energy SUSY breaking scenario, we must require that the GUT gauge symmetry breaking
preserves supersymmetry. In Appendix A 2 we work out the relevant D- and F-term equations. We find that the
existence of a nontrivial vacuum requires ρ (and τ for consistency) to be hermitian matrices. This is a consequence
of the fact that D-term flatness for the flipped SO(10) embedding implies 〈16i〉 =

〈
16i

〉∗
(Eq. (A31)). With this



CONCLUSIONS

A longstanding result claims that non-SUSY SO(10) GUTs with just the adjoint 
triggering the GUT breaking can not provide a successful gauge unification 

• We argued that this result is an artifact of the tree-level potential and showed 
that quantum corrections have a dramatic impact

• A model featuring                           in the Higgs sector has all the ingredients 
to be a viable minimal non-SUSY SO(10) candidate

2

I. INTRODUCTION

It has been shown recently [1, 2] that quantum effects solve the long-standing issue [3] of the incompatibility between
the dynamics of a set of Higgs sectors in the renormalizable non-supersymmetric SO(10) grand unified theory (GUT)
and the gauge unification constraints. In particular, such a minimal grand unified scenarios not only support viable
SO(10) breaking patterns passing through intermediate 421 or 3221 gauge symmetries (or their 3211 intersection),
but it also exhibits all the needed ingredients for a potentially realistic description of the Standard Model (SM) flavor
structure.

On the other hand, the simplest scenario featuring the Higgs scalars in 10H ⊕ 16H ⊕ 45H of SO(10) fails when
addressing the neutrino spectrum: in nonsupersymmetric models, the B − L breaking scale MB−L turns out to be
generally smaller than the GUT scale MG, by a few orders of magnitude. Thus, the scale of the right-handed (RH)
neutrino masses MN ∼ M2

B−L/MP emerging first at the d = 5 level from an operator of the form 162F (16
∗
H)2/MP

(with MP typically identified with the Planck scale) undershoots by orders of magnitude the range of about 1012 to
1014 GeV naturally suggested by the seesaw implementation.

MN ∼
(α
π

)
Y10

M2
B−L

MG
∼

M2
B−L

MP
$ MB−L ⊂ 162F (16

∗
H)2/MP (1)

MN ∼
(α
π

)
Y10

M2
B−L

MG
(2)

YP

MP
16F 16F 16

∗
H16∗H ⊃ MN ∼ YP

M2
B−L

MP
(3)

10H 16H 45H 45V (4)

Y10
√
α (5)

〈16H〉 ∼ MB−L $ MG (6)

16F 16F 126
∗
H ⊃ MN ∼ 〈126∗H〉 ∼ MB−L (7)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

SUSY SO(10) GUTs with rep.’s up to the adjoint do not provide a phenomenolgically 
viable breaking to the SM (GUT-scale Little Hierarchy due to NR operators)

• The flipped SO(10) embedding offers the option of breaking the gauge symmetry 
to SU(3)C ⊗U(1)Q at the renormalizable level and by means of a simple Higgs 
sector:
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2×
(
16H ⊕ 16H

)
⊕ 45H (28)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG & MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

In this paper, we point out that all these issues are alleviated if one considers a flipped variant of the SUSY SO(10)
unification. In particular, we shall show that the flipped SO(10) ⊗ U(1) scenario [7–9] offers an attractive option to
break the gauge symmetry to the SM at the renormalizable level by means of a quite simple Higgs sector, namely a
couple of SO(10) spinors 161,2 ⊕ 161,2 and one adjoint.

Within the extended SO(10) ⊗ U(1) gauge algebra one finds in general three inequivalent embeddings of the SM
hypercharge. In addition to the two solutions with the hypercharge stretching over the SU(5) or the SU(5) ⊗ U(1)
subgroups of SO(10) (respectively dubbed as the “standard” and “flipped” SU(5) embeddings), there is a third,
“flipped” SO(10), solution inherent to the SO(10)⊗ U(1) case, with a non-trivial projection of the SM hypercharge
onto the U(1) factor.

Whilst the difference between the standard and the flipped SU(5) embedding is semantical from the SO(10) point
of view, the flipped SO(10) case is qualitatively very different. In particular, the symmetry-breaking “power” of the

• We made the case for a two-step breaking of an E6 GUT realised in the vicinity 
of the Planck scale via an intermediate flipped SO(10)⊗U(1) stage
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IMPACT OF THE FULL TWO-LOOP ANALYSIS

• U(1) mixing makes the B-L scale essentially free (upper bound given by MI)
• Two-loop effects tend to raise the MI scale and lower the GUT scale 
• Sharp disagreement for chain XIIa: the MI scale is raised by 5 orders of magnitude ! 

General RG analysis of gauge coupling unification based on the Extended Survival 
Hypothesis (no detailed thresholds!)

[Deshpande, Keith, Pal (1993)] [Bertolini, DL, Malinsky (2009)]
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FIG. 1: The values of nU (red/upper branches) and n2 (blue/lower branches) are shown as functions of n1 for the pure gauge
running in the 126H case. The bold black line bounds the region n1 ≤ n2. From chains Ia to VIIa the short-dashed lines
represent the result of one-loop running while the solid ones correspond to the two-loop solutions. For chains VIIIa to XIIa
the short-dashed lines represent the one-loop results without the U(1)X ⊗ U(1)R mixing, the long-dashed lines account for the
complete one-loop results, while the solid lines represent the two-loop solutions. The scalar content at each stage corresponds
to that considered in Ref. [9], namely to that reported in Table II without the φ126 multiplets. For chains I to VII the two-step
SO(10) breaking consistent with minimal fine tuning is recovered in the n2 → nU limit. No solution is found for chain Xa.
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MPGB ∼ MG/4π (46)

MG/4π (47)

MI (48)

MB−L (49)

MZ (50)

SM (51)

SO(10) (52)

G2 (53)

GI (54)

GI = 3c 2L 2R 1B−L or 4C 2L 1R (55)

GI = 3c 2L 2R 1B−L (56)

GI = 4C 2L 1R (57)

3c 2L 1Y (58)

E. The one-loop vacuum structure

1. Conditions for the existence of the new vacua

We now examine the constraints on the parameters a2, β, τ and g which are needed at the scale µ = MG in order
to allow for the existence of the non-SU(5) vacua. From Eqs. (41)–(44) we find (a2 < 0)

• ωR = 0 and ωY "= 0 (3c 2L 2R 1X)

−8π2a2 <
τ2

ω2
Y

+ 2β2 + 19g4 , (59)
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We now examine the constraints on the parameters a2, β, τ and g which are needed at the scale µ = MG in order
to allow for the existence of the non-SU(5) vacua. From Eqs. (41)–(44) we find (a2 < 0)

• ωR = 0 and ωY "= 0 (3c 2L 2R 1X)
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ω2
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9

10 11 12 13 14

n113

14

15

16

17

n2nU

(a) Chain Ib

10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0

n113

14

15

16

17

n2nU

(b) Chain IIb

10 11 12 13 14

n113

14

15

16

17

n2nU

(c) Chain IIIb

10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4

n110

11

12

13

14

15

16

17

n2nU

(d) Chain IVb

12.0 12.5 13.0 13.5 14.0

n113.0

13.5

14.0

14.5

15.0

15.5

16.0

n2nU

(e) Chain Vb

12.0 12.5 13.0 13.5 14.0

n113.0

13.5

14.0

14.5

15.0

15.5

16.0

n2nU

(f) Chain VIb

13.50 13.55 13.60 13.65 13.70 13.75 13.80

n113.0

13.5

14.0

14.5

15.0

15.5

16.0

n2nU

(g) Chain VIIb

4 6 8 10

n1

10

12

14

16

n2nU

(h) Chain VIIIb

4 6 8 10 12

n110

11

12

13

14

15

16

17

n2nU

(i) Chain IXb

4 6 8 10 12

n112

13

14

15

16

n2nU

(j) Chain Xb

4 6 8 10 12 14

n113.0

13.5

14.0

14.5

15.0

15.5

n2nU

(k) Chain XIb

4 6 8 10 12

n1

12

13

14

15

n2nU

(l) Chain XIIb

FIG. 2: Same as in Fig. 1 for the 16H case.

When considering the gauge coupling renormaliza-
tion in the 2L1R1X3c stage, no effect at one-loop
appears in the non-abelian β-functions due to the
abelian gauge fields. On the other hand, the Higgs
fields surviving at the 2L1R1X3c stage, responsible
for the breaking to 1Y 2L3c, are (by construction) SM
singlets. Since the SM one-loop β-functions are not

affected by their presence, the solution found for n2,
nU and αU in the n1 = n2 case holds for n1 < n2 as
well. Only by performing correctly the mixed 1R1X

gauge running and the consistent matching with 1Y

one recovers the expected n1 flatness of the GUT
solution.

In this respect, it is interesting to notice that the
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E. The one-loop vacuum structure

1. Conditions for the existence of the new vacua

We now examine the constraints on the parameters a2, β, τ and g which are needed at the scale µ = MG in order
to allow for the existence of the non-SU(5) vacua. From Eqs. (39)–(42) we find (a2 < 0)

• ωR = 0 and ωY != 0 (3c 2L 2R 1X)

−8π2a2 <
τ2

ω2
Y

+ 2β2 + 19g4 , (48)

• ωR != 0 and ωY = 0 (4C 2L 1R)

−8π2a2 <
τ2

ω2
R

+ β2 + 13g4 . (49)

Considering for naturalness τ ∼ ωY,R Eqs. (48)–(49) imply |a2| < 10−2. We consider this constraint within the
natural range for dimensionless couplings. All other PGB states whose mass is proportional to −a2 receive positive
loop corrections of the same order, while quantum corrections are numerically irrelevant for all of the states with
GUT scale mass. On the same grounds we may neglect the multiplicative a2 loop corrections induced by 45H states
on the PGB masses.

2. Absolute minimum

It remains to show that the non SU(5) solution may be absolute minima of the potential. Ti this end it is necessary
to compute the one-loop stationary conditions Neglecting at the GUT scale the logarithmic corrections, we obtain for
the three relevant vacuum solutions:

• ω = ωR = −ωY (5′ 1Z′)

V (ω, χR = 0) = −
3ν4

16π2
+

(

5αν2

π2
+

5βν2

16π2
−

5τ2

16π2

)

ω2

+

(

−100a1 −
65a2

4
+

200a2
1

π2
+

785a1a2

12π2
+

1555a2
2

192π2
+

100α2

π2
+

25αβ

2π2
+

65β2

64π2
−

5g4

2π2

)

ω4 . (50)

• ωR = 0 and ωY != 0 (3c 2L 2R 1X)

V (ωY , χR = 0) = −
3ν4

16π2
+

(

3αν2

π2
+

3βν2

16π2
−

3τ2

16π2

)

ω2
Y

+

(

−36a1 −
21a2

4
+

72a2
1

π2
+

33a1a2

2π2
+

3a2
2

π2
+

36α2

π2
+

9αβ

2π2
+

21β2

64π2
−

15g4

16π2

)

ω4
Y . (51)
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GUT scale mass. On the same grounds we may neglect the multiplicative a2 loop corrections induced by 45H states
on the PGB masses.

5

4C 2L 2R 4C 2L 1R 3c 2L 2R 1X 3c 2L 1R 1X 3c 2L 1Y 5 5′ 1Z′ 1Y ′

(4, 2, 1) (4, 2, 0)
`

3, 2, 1, + 1

6

´ `

3, 2, 0, + 1

6

´ `

3, 2, + 1

6

´

10 (10, +1) + 1

6
`

1, 2, 1,− 1

2

´ `

1, 2, 0,− 1

2

´ `

1, 2,− 1

2

´

5
`

5,−3
´

− 1

2
`

4, 1, 2
´ `

4, 1, + 1

2

´ `

3, 1, 2,− 1

6

´ `

3, 1, + 1

2
,− 1

6

´ `

3, 1, + 1

3

´

5 (10, +1) − 2

3
`

4, 1,− 1

2

´ `

3, 1,− 1

2
,− 1

6

´ `

3, 1,− 2

3

´

10
`

5,−3
´

+ 1

3
`

1, 1, 2, + 1

2

´ `

1, 1, + 1

2
, + 1

2

´

(1, 1, +1) 10 (1, +5) 0
`

1, 1,− 1

2
, + 1

2

´

(1, 1, 0) 1 (10, +1) +1

TABLE I. Decomposition of the spinorial representation 16 with respect to the various SO(10) subgroups. The definitions and normal-
ization of the abelian charges are given in the text.

4C 2L 2R 4C 2L 1R 3c 2L 2R 1X 3c 2L 1R 1X 3c 2L 1Y 5 5′ 1Z′ 1Y ′

(1, 1, 3) (1, 1, +1) (1, 1, 3, 0) (1, 1, +1, 0) (1, 1, +1) 10 (10,−4) +1

(1, 1, 0) (1, 1, 0, 0) (1, 1, 0) 1 (1, 0) 0

(1, 1,−1) (1, 1,−1, 0) (1, 1,−1) 10
`

10, +4
´

−1

(1, 3, 1) (1, 3, 0) (1, 3, 1, 0) (1, 3, 0, 0) (1, 3, 0) 24 (24, 0) 0

(6, 2, 2)
`

6, 2, + 1

2

´ `

3, 2, 2,− 1

3

´ `

3, 2, + 1

2
,− 1

3

´ `

3, 2, 1

6

´

10 (24, 0) − 5

6
`

6, 2,− 1

2

´ `

3, 2,− 1

2
,− 1

3

´ `

3, 2,− 5

6

´

24 (10,−4) + 1

6
`

3, 2, 2, + 1

3

´ `

3, 2, + 1

2
, + 1

3

´ `

3, 2, + 5

6

´

24
`

10, +4
´

− 1

6
`

3, 2,− 1

2
, + 1

3

´ `

3, 2,− 1

6

´

10 (24, 0) + 5

6

(15, 1, 1) (15, 1, 0) (1, 1, 1, 0) (1, 1, 0, 0) (1, 1, 0) 24 (24, 0) 0
`

3, 1, 1, + 2

3

´ `

3, 1, 0, + 2

3

´ `

3, 1, + 2

3

´

10
`

10, +4
´

+ 2

3
`

3, 1, 1,− 2

3

´ `

3, 1, 0,− 2

3

´ `

3, 1,− 2

3

´

10 (10,−4) − 2

3

(8, 1, 1, 0) (8, 1, 0, 0) (8, 1, 0) 24 (24, 0) 0

TABLE II. Same as in Table I for the SO(10) adjoint (45) representation.

2. The L-R chains

In this language, the potentially viable breaking chains fulfilling the basic gauge unification constraints advocated
in the Introduction correspond to the settings with:

Chain VIII ωY ! ωR > χR : SO(10) → 3c2L2R1B−L → 3c2L1R1B−L → 3c2L1Y

Chain XII ωR ! ωY > χR : SO(10) → 4C2L1R → 3c2L1R1B−L → 3c2L1Y

As remarked in [36], the cases ωY,R ∼ χR lead to effective two-step SO(10) breaking scenarios with a non-minimal
set of surviving scalars at the G2 stage. On the other hand, a truly two-step setup can be recovered (with the minimal
fine tuning) by considering the case ωR or ωY exactly vanish. It is remarkable that in all cases GUT thresholds effects
related to the results of the present analysis improve the unification pattern [36].

3. Standard SU(5) versus flipped SU(5)

There are in general two distinct SM-compatible embeddings of SU(5) (rank=4) into SO(10) (rank=5) [26, 27].
They differ in the SU(5) Cartan algebra and therefore in the U(1)Z cofactor.

In the “standard” embedding, the weak hypercharge operator Y = T (3)
R +TX belongs to the SU(5) algebra and the

orthogonal Cartan generator Z (obeying [Ti, Z] = 0 for all Ti ∈ SU(5)) is given by Z = −4T (3)
R + 6TX .

In the “flipped” SU(5)′ scenario, the assignment of the right-handed quarks and leptons into the SU(5)′ multiplets

is turned over so that the “flipped” hypercharge generator reads Y ′ = −T (3)
R + TX and, accordingly, the additional

U(1)Z′ generator reads Z ′ = 4T (3)
R + 6TX (such that [Ti, Z ′] = 0 for all Ti ∈ SU(5)′). Weak hypercharge is then given

by Y = (Z ′ − Y ′)/5. Tables. I–II show the standard and flipped decomposition of the spinorial and adjoint SO(10)
representations.
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to allow for the existence of the non-SU(5) vacua. From Eqs. (41)–(44) we find (a2 < 0)
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ω2
Y

+ 2β2 + 19g4 , (59)
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4

Apart from the Higgs multiplets, the minimal SO(10) GUT accommodates the SM matter within three copies
of SO(10) spinors 16iF , (i = 1, 2, 3). In analogy to the considerations on the 10H , the fermions and their Yukawa
interactions do not play a role in the GUT scale dynamics and will not be considered further (we assume for the
present discussion that the right handed neutrino mass is small with respect to the unification scale).

We defer the study of the complete Higgs potential and the Yukawa sector to a forthcoming paper.

MG ≡ 10nUGeV (1)

MI ≡ 10n2GeV (2)

MB−L ≡ 10n1GeV (3)

(100 GeV)2/MB−L !
√

∆m2
atm ⇒ MB−L " 1014 GeV (4)

A. The tree-level Higgs potential

The most general renormalizable tree-level scalar potential which can be constructed out of 45H and 16H reads (see
for instance [30, 31]):

V0 = VΦ + Vχ + VΦχ , (5)

where

V0 = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 − ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 + α(χ†

+χ+)TrΦ
2 (6)

VΦ = −µ2

2
TrΦ2 +

a1
4
(TrΦ2)2 +

a2
4
TrΦ4 , (7)

Vχ = −ν2

2
χ†
+χ+ +

λ1

4
(χ†

+χ+)
2 +

λ2

4
(χ†

+Γjχ−)(χ
†
−Γjχ+)

and

VΦχ = α (χ†χ)TrΦ2 + β χ†Φ2χ+ τ χ†Φχ . (8)

V0 = V45H + V16H + V45H16H (9)

Vmoduli = −µ2 Tr 452H + a1 (Tr 45
2
H)2 − ν2 16†H16H + λ1 (16

†
H16H)2 + α (16†H16H)Tr 452H (10)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 (11)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 (12)

V45H16H = α (16†H16H)Tr 452H (13)

V45H = −µ2 Tr 452H + a1 (Tr 45
2
H)2 + a2 Tr 45

4
H (14)

V16H = −ν2 16†H16H + λ1 (16
†
H16H)2 + λ2 (16H Γ 16H)(16†H Γ 16†H) (15)

V45H16H = α (16†H16H)Tr 452H + β 16†H452H16H + τ 16†H45H16H (16)

The mass terms as well as the coupling constants above are real by hermiticity. Note also that linear and cubic
Φ self-interactions are absent due the zero trace of the SO(10) adjoint representation. For sake of simplicity, all
tensorial indices have been suppressed; an interested reader can find more information on the tensorial structure of
V0 in Appendix A.
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MINIMAL FLIPPED SO(10)⊗U(1) SUSY HIGGS SECTOR

The most general renormalizable superpotential made of                                 is
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LR SU(5)

SO(10) SO(10)f SO(10) SO(10)f

(3, 1;− 1
3 )6 (3, 1;− 1

3 )6 (3, 1;− 1
3 )5 (3, 1;− 1

3 )5

(3, 1;+ 1
3 )6 (3, 1;− 2

3 )6 (1, 2;+ 1
2 )5 (1, 2;− 1

2 )5

(1, 2;+ 1
2 )1+ (1, 2;− 1

2 )1+ (3, 1;+ 1
3 )5 (3, 1;− 2

3 )5
(1, 2;− 1

2 )1− (1, 2;− 1
2 )1− (1, 2;− 1

2 )5 (1, 2;− 1
2 )5

TABLE III. Decomposition of the fundamental 10-dimensional representation under SU(3)c ⊗ SU(2)L ⊗ U(1)Y , for standard SO(10)
and flipped SO(10) ⊗ U(1)X (SO(10)f ) respectively. In the first two columns the subscripts keep track of the SU(4)C origin (the extra

symbols ± correspond to the eigenvalues of the T
(3)
R Cartan generator) while in the last two columns the SU(5) content is shown.

LR SU(5)

SO(10) SO(10)f SO(10) SO(10)f

(3, 2;+ 1
6 )4 (3, 2;+ 1

6 )4 (3, 1;+ 1
3 )5 (3, 1;+ 1

3 )5
(1, 2;− 1

2 )4 (1, 2;+ 1
2 )4 (1, 2;− 1

2 )5 (1, 2;+ 1
2 )5

(3, 1;+ 1
3 )4+ (3, 1;+ 1

3 )4+ (3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 1;− 2
3 )4− (3, 1;+ 1

3 )4− (3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)4+ (1,1;0)4+ (1, 1;+1)10 (1,1;0)10

(1,1;0)4− (1,1;0)4− (1,1;0)1 (1,1;0)1

TABLE IV. Same as in Table ?? for the spinor 16-dimensional representation. The SM singlets are emphasized in bold-face and shall
be denoted, in the the SU(5) description, as e ≡ (1, 1; 0)10 and ν ≡ (1, 1; 0)1. The LR decomposition shows that e and ν belong to an
SU(2)R doublet.

3. The supersymmetric flipped SO(10) model

The presence of additional SM singlets (some of them transforming non trivially under SU(5)) in the lowest-
dimensional representations of the flipped realisation of the SO(10) gauge symmetry provides the ground for obtaining
a viable symmetry breaking with a significantly simplified renormalizable Higgs sector. Naively one may guess that
the pair of VEVs in 16H (plus another conjugated pair in 16H to maintain the required D-flatness) might be enough
to break the GUT symmetry entirely, since one component transforms as a 10 of SU(5) ⊂ SO(10), while the other one
is identified with the SU(5) singlet (c.f. Table ??). Notice that even in the presence of an additional four-dimensional
vacuum manifold of the adjoint Higgs multiplet, the little group is determined by the 16H VEVs since, due to the
simple form of the renormalizable superpotential F -flatness make the VEVs of 45H aligned with those of 16H16H ,
providing just the freedom necessary for them to develop.

Life is not that simple. Any two VEV directions in 16H are equivalent to one and a residual SU(5) ⊗ U(1)
symmetry is always preserved by 〈16〉H [? ]. Thus, even in the flipped SO(10) ⊗ U(1) setting the Higgs model
spanned on 16H ⊕ 16H ⊕ 45H suffers from an SU(5)⊗ U(1) lock analogue to the one of the standard SUSY SO(10)
models with the same Higgs sector. This can be understood by taking into account the freedom in choosing the basis
in the SO(10) algebra so that the pair of VEVs within 16 can be always “rotated” onto a single component, which
can be then viewed as the direction of the singlet in the decomposition of 16 = 5 ⊕ 10 ⊕ 1 with respect to a SU(5)
subgroup of the SO(10) gauge symmetry.

On the other hand, with a pair of interacting 16H ⊕ 16H ’s the vacuum directions in the two 16H ’s need not be
aligned and the intersection of the two different invariant subalgebras (standard and flipped SU(5) for a specific VEV
configuration) leaves as a little group the the SU(3)c ⊗SU(2)L ⊗U(1)Y of the SM. F-flatness makes then the adjoint
VEVs (45H is the needed carrier of 16H interaction at the renormalizable level) aligned to the SM vacuum. Hence,
as we will show in the next section, 2× (16H + 16H)⊕ 45H defines the minimal renormalizable Higgs setting for the
SUSY flipped SO(10) ⊗ U(1)X model. For comparison, let us reiterate that in the standard renormalizable SO(10)
setting the SUSY vacuum is always SU(5) regardless of how many copies of 16H ⊕ 16H are employed together with
at most a pair of adjoints.
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SO(10) SO(10)f

(3, 1;+ 1
3 )5 (3, 1;+ 1

3 )5
(1, 2;− 1

2 )5 (1, 2;+ 1
2 )5

(3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)10 (1,1;0)10 ≡ e

(1,1;0)1 (1,1;0)1 ≡ ν

TABLE V. Same as in Table III for the spinor 16-dimensional representation. The SM singlets are emphasized in bold-face and shall
be denoted, in the the SU(5) description, as e ≡ (1, 1; 0)10 and ν ≡ (1, 1; 0)1. The LR decomposition shows that e and ν belong to an
SU(2)R doublet.

LR SU(5)

SO(10) SO(10)f SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 (1,1;0)1 (1,1;0)1

(1,1;0)15 (1,1;0)15 (1,1;0)24 (1,1;0)24

(8, 1; 0)15 (8, 1; 0)15 (8, 1; 0)24 (8, 1; 0)24

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15 (3, 2;− 5
6 )24 (3, 2;+ 1

6 )24

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15 (3, 2;+ 5
6 )24 (3, 2;− 1

6 )24

(1, 3; 0)1 (1, 3; 0)1 (1, 3; 0)24 (1, 3; 0)24

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+ (3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+ (3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)1+ (1,1;0)1+ (1, 1;+1)10 (1,1;0)10

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6− (3, 2;− 1
6 )10 (3, 2;− 1

6 )10
(3, 2;− 5

6 )6− (3, 2;+ 1
6 )6− (3, 1;+ 2

3 )10 (3, 1;− 1
3 )10

(1, 1;−1)1− (1,1;0)1− (1, 1;−1)10 (1,1;0)10

TABLE VI. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for the
LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and ω−

belong to an SU(2)R triplet, while ωY is a B-L singlet.

4. The matter sector

Due to the flipped hypercharge assignment, the SM matter can no longer be fully embedded into the 16-dimensional
SO(10) spinor, as in the standard case. By inspecting Table IV one sees that a pair of SM sub-multiplets of 16
transforming as uc or ec is traded for an extra dc-like state and an extra SM singlet. The former pair is found in
the SO(10) vector and the singlet. Thus, flipping reshuffles each of the SM matter generations across 16⊕ 10⊕ 1 of
SO(10), which, by construction, is the content of the 27-dimensional fundamental representation of E6. This brings in
a set of additional degrees of freedom, in particular (1, 1, 0)16, (3, 1,+

1
3 )16, (1, 2,+

1
2 )16, (3, 1,−

1
3 )10 and (1, 2,− 1

2 )10,
where the subscript indicates their SO(10) origin. Notice that the SM “exotics” can be grouped into superheavy
vector-like pairs and thus do not appear in the low energy spectrum. Furthermore, the U(1)X anomalies associated
with each of the SO(10) ⊗ U(1)X matter multiplets cancel when summed over the entire reducible representation
161 ⊕ 10−2 ⊕ 14. An introductory discussion of the matter spectrum in this scenario is deferred to Sect. V.

B. Supersymmetric vacuum

The most general renormalizable Higgs superpotential, built-off the representations 45 ⊕ 161 ⊕ 162 ⊕ 161 ⊕ 162 is
given by

WH =
µ

2
Tr 452 + ρij16i16j + τij16i4516j , (21)

10

SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 ≡ ωR

(1,1;0)15 (1,1;0)15 ≡ ωY

(8, 1; 0)15 (8, 1; 0)15

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15

(1, 3; 0)1 (1, 3; 0)1

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+

(1, 1;+1)1+ (1,1;0)1+ ≡ ω+

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6−

(3, 2;− 5
6 )6− (3, 2;+ 1

6 )6−

(1, 1;−1)1− (1,1;0)1− ≡ ω−

TABLE VII. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for
the LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and
ω− belong to an SU(2)R triplet, while ωY is a B-L singlet.

where i, j = 1, 2 and the notation is explained in Appendix A1. Without loss of generality we can take µ real by
a global phase redefinition, while τ (or ρ) can be diagonalized by a bi-unitary transformation acting on the flavor
indices of the 16 and the 16. Let us choose, for instance, τij = τiδij , with τi real. We label the SM-singlets contained
in the 16 in the following way: e ≡ (1, 1; 0)10 (only for flipped SO(10)) and ν ≡ (1, 1; 0)1 (for both the embeddings).

By plugging in the SM-singlet VEVs ωR, ωY , ω+, ω−, e1,2, e1,2, ν1,2 and ν1,2 (cf. again Appendix A1), the
superpotential reads

〈WH〉 = µ
(
2ω2

R + 3ω2
Y + 4ω−ω+

)

+ ρ11 (e1e1 + ν1ν1) + ρ21 (e2e1 + ν2ν1)
+ ρ12 (e1e2 + ν1ν2) + ρ22 (e2e2 + ν2ν2)

+ τ1

[
−ω−e1ν1 − ω+ν1e1 −

ωR√
2
(e1e1 − ν1ν1)

+
3

2

ωY√
2
(e1e1 + ν1ν1)

]

+ τ2

[
−ω−e2ν2 − ω+ν2e2 −

ωR√
2
(e2e2 − ν2ν2)

+
3

2

ωY√
2
(e2e2 + ν2ν2)

]
. (22)

Having in mind a low energy SUSY breaking scenario, we must require that the GUT gauge symmetry breaking
preserves supersymmetry. In Appendix A 2 we work out the relevant D- and F-term equations. We find that the
existence of a nontrivial vacuum requires ρ (and τ for consistency) to be hermitian matrices. This is a consequence
of the fact that D-term flatness for the flipped SO(10) embedding implies 〈16i〉 =

〈
16i

〉∗
(Eq. (A31)). With this

We require D- and F-flatness at the GUT scale 

The inspection of the gauge boson spectrum reveals the following little groups 
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SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 ≡ ωR

(1,1;0)15 (1,1;0)15 ≡ ωY

(8, 1; 0)15 (8, 1; 0)15

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15

(1, 3; 0)1 (1, 3; 0)1

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+

(1, 1;+1)1+ (1,1;0)1+ ≡ ω+

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6−

(3, 2;− 5
6 )6− (3, 2;+ 1

6 )6−

(1, 1;−1)1− (1,1;0)1− ≡ ω−

TABLE VII. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for
the LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and
ω− belong to an SU(2)R triplet, while ωY is a B-L singlet.

where i, j = 1, 2 and the notation is explained in Appendix A1. Without loss of generality we can take µ real by
a global phase redefinition, while τ (or ρ) can be diagonalized by a bi-unitary transformation acting on the flavor
indices of the 16 and the 16. Let us choose, for instance, τij = τiδij , with τi real. We label the SM-singlets contained
in the 16 in the following way: e ≡ (1, 1; 0)10 (only for flipped SO(10)) and ν ≡ (1, 1; 0)1 (for both the embeddings).

By plugging in the SM-singlet VEVs ωR, ωY , ω+, ω−, e1,2, e1,2, ν1,2 and ν1,2 (cf. again Appendix A1), the
superpotential reads

〈WH〉 = µ
(
2ω2

R + 3ω2
Y + 4ω−ω+

)

+ ρ11 (e1e1 + ν1ν1) + ρ21 (e2e1 + ν2ν1) + ρ12 (e1e2 + ν1ν2) + ρ22 (e2e2 + ν2ν2)

+ τ1

[
−ω−e1ν1 − ω+ν1e1 −

ωR√
2
(e1e1 − ν1ν1) +

3

2

ωY√
2
(e1e1 + ν1ν1)

]

+ τ2

[
−ω−e2ν2 − ω+ν2e2 −

ωR√
2
(e2e2 − ν2ν2) +

3

2

ωY√
2
(e2e2 + ν2ν2)

]
(22)

Having in mind a low energy SUSY breaking scenario, we must require that the GUT gauge symmetry breaking
preserves supersymmetry. In Appendix A 2 we work out the relevant D- and F-term equations. We find that the
existence of a nontrivial vacuum requires ρ (and τ for consistency) to be hermitian matrices. This is a consequence
of the fact that D-term flatness for the flipped SO(10) embedding implies 〈16i〉 =

〈
16i

〉∗
(Eq. (A31)). With this

restriction the vacuum manifold is given by

8µω+ = τ1r
2
1 sin 2α1e

i(φe1−φν1 ) + τ2r
2
2 sin 2α2e

i(φe2−φν2 )

8µω− = τ1r
2
1 sin 2α1e

i(φν1−φe1 ) + τ2r
2
2 sin 2α2e

i(φν2−φe2 )

4
√
2µωR = τ1r

2
1 cos 2α1 + τ2r

2
2 cos 2α2 ,

4
√
2µωY = −τ1r

2
1 − τ2r

2
2

e1,2 = r1,2 cosα1,2 eiφe1,2

ν1,2 = r1,2 sinα1,2 eiφν1,2

e1,2 = r1,2 cosα1,2 e−iφe1,2

ν1,2 = r1,2 sinα1,2 e−iφν1,2

where r1, r2 and α± ≡ α1 ± α2 are fixed in terms of the superpotential parameters,

r21 = −2µ (ρ22τ1 − 5ρ11τ2)

3τ21 τ2
r22 = −2µ (ρ11τ2 − 5ρ22τ1)

3τ1τ22
(23)

cosα− = ξ
sinΦν − sinΦe

sin (Φν − Φe)
cosα+ = ξ

sinΦν + sinΦe

sin (Φν − Φe)
(24)

10
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(1,1;0)10 (1,1;0)10 ≡ ωR

(1,1;0)15 (1,1;0)15 ≡ ωY

(8, 1; 0)15 (8, 1; 0)15

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15

(1, 3; 0)1 (1, 3; 0)1

(3, 2;+ 1
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(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+

(1, 1;+1)1+ (1,1;0)1+ ≡ ω+

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6−

(3, 2;− 5
6 )6− (3, 2;+ 1

6 )6−

(1, 1;−1)1− (1,1;0)1− ≡ ω−

TABLE VII. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for
the LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and
ω− belong to an SU(2)R triplet, while ωY is a B-L singlet.

where i, j = 1, 2 and the notation is explained in Appendix A1. Without loss of generality we can take µ real by
a global phase redefinition, while τ (or ρ) can be diagonalized by a bi-unitary transformation acting on the flavor
indices of the 16 and the 16. Let us choose, for instance, τij = τiδij , with τi real. We label the SM-singlets contained
in the 16 in the following way: e ≡ (1, 1; 0)10 (only for flipped SO(10)) and ν ≡ (1, 1; 0)1 (for both the embeddings).

By plugging in the SM-singlet VEVs ωR, ωY , ω+, ω−, e1,2, e1,2, ν1,2 and ν1,2 (cf. again Appendix A1), the
superpotential reads

〈WH〉 = µ
(
2ω2

R + 3ω2
Y + 4ω−ω+

)

+ ρ11 (e1e1 + ν1ν1) + ρ21 (e2e1 + ν2ν1) + ρ12 (e1e2 + ν1ν2) + ρ22 (e2e2 + ν2ν2)

+ τ1

[
−ω−e1ν1 − ω+ν1e1 −

ωR√
2
(e1e1 − ν1ν1) +

3

2

ωY√
2
(e1e1 + ν1ν1)

]

+ τ2

[
−ω−e2ν2 − ω+ν2e2 −

ωR√
2
(e2e2 − ν2ν2) +

3

2

ωY√
2
(e2e2 + ν2ν2)

]
(22)

Having in mind a low energy SUSY breaking scenario, we must require that the GUT gauge symmetry breaking
preserves supersymmetry. In Appendix A 2 we work out the relevant D- and F-term equations. We find that the
existence of a nontrivial vacuum requires ρ (and τ for consistency) to be hermitian matrices. This is a consequence
of the fact that D-term flatness for the flipped SO(10) embedding implies 〈16i〉 =

〈
16i

〉∗
(Eq. (A31)). With this

restriction the vacuum manifold is given by

8µω+ = τ1r
2
1 sin 2α1e

i(φe1−φν1 ) + τ2r
2
2 sin 2α2e

i(φe2−φν2 )

8µω− = τ1r
2
1 sin 2α1e

i(φν1−φe1 ) + τ2r
2
2 sin 2α2e

i(φν2−φe2 )

4
√
2µωR = τ1r

2
1 cos 2α1 + τ2r

2
2 cos 2α2 ,

4
√
2µωY = −τ1r

2
1 − τ2r

2
2

e1,2 = r1,2 cosα1,2 eiφe1,2

ν1,2 = r1,2 sinα1,2 eiφν1,2

e1,2 = r1,2 cosα1,2 e−iφe1,2

ν1,2 = r1,2 sinα1,2 e−iφν1,2

where r1, r2 and α± ≡ α1 ± α2 are fixed in terms of the superpotential parameters,

r21 = −2µ (ρ22τ1 − 5ρ11τ2)

3τ21 τ2
r22 = −2µ (ρ11τ2 − 5ρ22τ1)

3τ1τ22
(23)

cosα− = ξ
sinΦν − sinΦe

sin (Φν − Φe)
cosα+ = ξ

sinΦν + sinΦe

sin (Φν − Φe)
(24)
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SO(10) SO(10)f

(3, 1;+ 1
3 )5 (3, 1;+ 1

3 )5
(1, 2;− 1

2 )5 (1, 2;+ 1
2 )5

(3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)10 (1,1;0)10 ≡ e

(1,1;0)1 (1,1;0)1 ≡ ν

TABLE V. Same as in Table III for the spinor 16-dimensional representation. The SM singlets are emphasized in bold-face and shall
be denoted, in the the SU(5) description, as e ≡ (1, 1; 0)10 and ν ≡ (1, 1; 0)1. The LR decomposition shows that e and ν belong to an
SU(2)R doublet.

LR SU(5)

SO(10) SO(10)f SO(10) SO(10)f

(1,1;0)10 (1,1;0)10 (1,1;0)1 (1,1;0)1

(1,1;0)15 (1,1;0)15 (1,1;0)24 (1,1;0)24

(8, 1; 0)15 (8, 1; 0)15 (8, 1; 0)24 (8, 1; 0)24

(3, 1;+ 2
3 )15 (3, 1;− 1

3 )15 (3, 2;− 5
6 )24 (3, 2;+ 1

6 )24

(3, 1;− 2
3 )15 (3, 1;+ 1

3 )15 (3, 2;+ 5
6 )24 (3, 2;− 1

6 )24

(1, 3; 0)1 (1, 3; 0)1 (1, 3; 0)24 (1, 3; 0)24

(3, 2;+ 1
6 )6+ (3, 2;+ 1

6 )6+ (3, 2;+ 1
6 )10 (3, 2;+ 1

6 )10

(3, 2;+ 5
6 )6+ (3, 2;− 1

6 )6+ (3, 1;− 2
3 )10 (3, 1;+ 1

3 )10

(1, 1;+1)1+ (1,1;0)1+ (1, 1;+1)10 (1,1;0)10

(3, 2;− 1
6 )6− (3, 2;− 1

6 )6− (3, 2;− 1
6 )10 (3, 2;− 1

6 )10
(3, 2;− 5

6 )6− (3, 2;+ 1
6 )6− (3, 1;+ 2

3 )10 (3, 1;− 1
3 )10

(1, 1;−1)1− (1,1;0)1− (1, 1;−1)10 (1,1;0)10

TABLE VI. Same as in Table III for the 45 representation. The SM singlets are stressed in bold-face and are labelled in the text, for the
LR basis, as ωY ≡ (1, 1; 0)15, ω+ ≡ (1, 1; 0)1+ , ωR ≡ (1, 1; 0)10 and ω− ≡ (1, 1; 0)1− . The LR decomposition shows that ω+, ωR and ω−

belong to an SU(2)R triplet, while ωY is a B-L singlet.

SO(10), which, by construction, is the content of the 27-dimensional fundamental representation of E6. This brings in
a set of additional degrees of freedom, in particular (1, 1, 0)16, (3, 1,+

1
3 )16, (1, 2,+

1
2 )16, (3, 1,−

1
3 )10 and (1, 2,− 1

2 )10,
where the subscript indicates their SO(10) origin. Notice that the SM “exotics” can be grouped into superheavy
vector-like pairs and thus do not appear in the low energy spectrum. Furthermore, the U(1)X anomalies associated
with each of the SO(10) ⊗ U(1)X matter multiplets cancel when summed over the entire reducible representation
161 ⊕ 10−2 ⊕ 14. An introductory discussion of the matter spectrum in this scenario is deferred to Sect. V.

B. Supersymmetric vacuum

The most general renormalizable Higgs superpotential, built-off the representations 45 ⊕ 161 ⊕ 162 ⊕ 161 ⊕ 162 is
given by

WH =
µ

2
Tr 452 + ρij16i16j + τij16i4516j , (50)

where i, j = 1, 2 and the notation is explained in Appendix A1. Without loss of generality we can take µ real by
a global phase redefinition, while τ (or ρ) can be diagonalized by a bi-unitary transformation acting on the flavor
indices of the 16 and the 16. Let us choose, for instance, τij = τiδij , with τi real. We label the SM-singlets contained
in the 16 in the following way: e ≡ (1, 1; 0)10 (only for flipped SO(10)) and ν ≡ (1, 1; 0)1 (for both the embeddings).

τij −→ τiδij (bi-unitary transf.) (51)

• The vacuum manifold reads

Where        and        are fixed in terms of superpotential paremeters ... 

4

2×
(
16H ⊕ 16H

)
⊕ 45H (28)

α− #= 0 and/or Φν #= Φe (29)

r1,2 α1,2 (30)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ' MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

In this paper, we point out that all these issues are alleviated if one considers a flipped variant of the SUSY SO(10)
unification. In particular, we shall show that the flipped SO(10) ⊗ U(1) scenario [7–9] offers an attractive option to
break the gauge symmetry to the SM at the renormalizable level by means of a quite simple Higgs sector, namely a
couple of SO(10) spinors 161,2 ⊕ 161,2 and one adjoint.
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16H ⊕ 16H

)
⊕ 45H (28)

α− #= 0 and/or Φν #= Φe (29)

r1,2 α1,2 (30)

This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ' MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
setting with 16H ⊕ 16H relying on a d = 5 RH neutrino mass operator. The models with 126H ⊕ 126H are also prone
to trouble with gauge unification, due to the larger number of high-dimensionality Higgs multiplets spread around
the GUT-scale.

Thus, in none of the cases above the simplest conceivable SO(10) Higgs sector spanned over the lowest-dimensionality
irreducible representations (up to the adjoint) seems to offer a natural scenario for realistic model building. Since the
option of a simple GUT-scale Higgs dynamics involving low-dimensionality representations governed by a simple renor-
malizable superpotential is particularly attractive, we aimed at studying the conditions under which the seemingly
ubiquitous SU(5) “lock” can be overcomed, while keeping only spinorial and adjoint SO(10) representations.

Let us emphasize that the assumption that the gauge symmetry breaking is driven by the renormalizable part of the
Higgs superpotential does not clash with the fact that, in models with 16H ⊕ 16H , the neutrino masses are generated
at the non-renormalizable level, and other fermions may be sensitive to physics beyond the GUT scale. As far as
symmetry breaking is concerned Planck induced d > 4 effective interactions are irrelevant perturbations.

The simplest attempt of doubling either 16H ⊕ 16H or 45H in order to relax the F -flatness constraints is easily
shown not to work. There is only one SM singlet field direction associated to each of the 16H ⊕ 16H pairs. Thus,
F -flatness makes the VEVs in 45H align along this direction regardless of the number of 16⊕ 16’s that contribute to
the relevant F -term, ∂W/∂45 (see for instance Eq. (6) in ref. [6]). Similarly, doubling the number of 45H ’s does not
help either. Since there is no mixing among the 45’s apart from the mass term, F-flatness aligns both 〈45H〉 in the
SU(5) direction of 16H ⊕ 16H . For three (and more) adjoints, a mixing term of the form 451452453 is allowed and
the vacuum alignment may be broken.

From this brief excursus one might conclude that the price for the desired group-theoretical simplicity of the Higgs
sectors supporting potentially viable SUSY SO(10) models is high, as this basic strategy seems to conflict with the
practical requirements of predictivity and tractability.

In this paper, we point out that all these issues are alleviated if one considers a flipped variant of the SUSY SO(10)
unification. In particular, we shall show that the flipped SO(10) ⊗ U(1) scenario [7–9] offers an attractive option to
break the gauge symmetry to the SM at the renormalizable level by means of a quite simple Higgs sector, namely a
couple of SO(10) spinors 161,2 ⊕ 161,2 and one adjoint.
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cosα− = ξ
sinΦν − sinΦe

sin (Φν − Φe)
cosα+ = ξ

sinΦν + sinΦe

sin (Φν − Φe)
(25)

with

ξ =
6|ρ12|√

− 5ρ2
11τ2
τ1

− 5ρ2
22τ1
τ2

+ 26ρ22ρ11

(26)

The phase factors Φe and Φν are defined as

Φν ≡ φν1 − φν2 + φρ12 Φe ≡ φe1 − φe2 + φρ12 (27)

in terms of the relevant phases φe1,2 , φν1,2 and φρ12 . Eqs. (??)–(??) imply that for Φν = Φe = Φ, Eq. (??) reduces to
cosα− → ξ cosΦ while α+ is undetermined (thus parametrizing an orbit of isomorphic vacua).

In order to determine the little group of the vacuum manifold we explicitly compute in Appendix A 3 the corre-
sponding gauge boson spectrum. We find that the vacuum in Eq. (24), does preserve for α− $= 0 the SM algebra.

As already mentioned in the introduction this result can be understood in terms of the disalignement of the spinor
VEVs that is made possible at the renormalizable level by the interaction with the 45H . If we choose to align the
161 ⊕ 161 and 162 ⊕ 162 VEVs (α− = 0 and Φν = Φe) or equivalently, to decouple one of the Higgs spinors from the
vacuum (r2 = 0 for instance) the little group is SU(5)⊗ U(1).

α− $= 0 or Φν $= Φe (28)

α− = 0 and Φν = Φe (29)

This result can be easily understood by observing that in the case there is just one pair of 16⊕ 16 (or the two pairs
of 16 ⊕ 16 are aligned) the two SM-singlet directions, e and ν, are connected by an SU(2)R transformation. This
freedom can be used to rotate one of the VEVs to zero, so that the little group is standard or flipped SU(5)⊗ U(1).

In this respect, the Higgs adjoint plays the role of a renormalizable agent that prevents the two pairs of spinor vacua
from aligning with each other along the SU(5)⊗U(1) direction. Actually, by decoupling the adjoint Higgs, F-flatness
makes the (aligned) 16i ⊕ 16i vacuum trivial, as one verifies by inspecting the F-terms in Eq. (A14) of Appendix A 2
for 〈45H〉 = 0 and det ρ $= 0.

The same result with just two pairs of 16 ⊕ 16 Higgs multiplets is obtained by adding NR spinor interactions, at
the cost we find the option of having a renormalizable Higgs potential of introducing a potentially critical GUT-
scale threshold hierarchy. In the flipped SO(10) setup here proposed the GUT symmetry breaking is driven by the
renormalizable part of the Higgs superpotential, thus allowing naturally for a one-step matching with the minimal
supersymmetric extension of the SM (MSSM).

Before addressing the possible embedding of the model in a unified E6 scenario, we comment on the naturalness of
the doublet-triplet mass splitting in flipped embeddings.

C. Doublet-Triplet splitting in flipped models

Flipped embeddings offers a rather economical way to implement the Doublet-Triplet (DT) splitting through the
so called Missing Partner (MP) mechanism [18, 19]. In order to show the relevat features let us consider first flipped
SU(5)⊗ U(1)Z .

In order to implement the MP mechanism in flipped SU(5) ⊗ U(1)Z the Higgs superpotential is required to have
the couplings

WH ⊃ 10+110+15−2 + 10−110−15+2 , (30)

where the subscripts correspond to the U(1)Z quantum numbers, but not the a 5−25+2 mass term. From Eq. (30) we
extract the relevant terms that lead to a mass for the Higgs triplets

WH ⊃ 〈(1, 1; 0)10〉 (3, 1;+ 1
3 )10(3, 1;−

1
3 )5

+ 〈(1, 1; 0)10〉 (3, 1;− 1
3 )10(3, 1;+

1
3 )5 . (31)
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This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [2], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [4–6] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.

This issue might be addressed by giving up renormalizability. However, this option may be rather problematic
since it introduces a delicate interplay between physics at two different scales, MG ( MP , with the consequence of
splitting the GUT-scale thresholds over several orders of magnitude around MG. This may affect proton decay as
well as the SUSY gauge unification, and force the B − L scale below the GUT scale. The latter is harmful for the
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This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case
the neutrino masses can be generated at the renormalizable level by the term 162F 126

∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [? ], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [? ? ? ] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.
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This issue can be somewhat alleviated by considering 126H in place of 16H in the Higgs sector, since in such a case

the neutrino masses can be generated at the renormalizable level by the term 162F 126
∗
H . This lifts the problematic

MB−L/MP suppression factor inherent to the d = 5 effective mass and yields MN ∼ MB−L, what might be, at least
in principle, acceptable. This scenario, though viable in principle, c.f. [? ], involves a challenging one-loop analysis of
the scalar potential governing the dynamics of the 10H ⊕ 126H ⊕ 45H Higgs sector that, to our knowledge, remains
to be done.

Invoking TeV-scale supersymmetry (SUSY), the qualitative picture changes dramatically. Indeed, the gauge running
within the MSSM prefers MB−L in the proximity of MG and, hence, the Planck-suppressed d = 5 RH neutrino mass
operator, obtained with a 10H ⊕ 16H ⊕ 16H ⊕ 45H Higgs sector, can naturally reproduce the desired range for MN .
Let us recall that the extra 16H is mandatory in this context in order to retain SUSY as a good symmetry below the
GUT scale.

On the other hand, it is well known [? ? ? ] that the relevant superpotential does not support, at the renormalizable
level, a supersymmetric breaking of the SO(10) gauge group to the SM. This is due to the constraints on the vacuum
manifold imposed by the F - and D-flatness conditions which, apart from linking the magnitudes of the SU(5)-singlet
16H and 16H vacuum expectation values (VEV), make the the adjoint vacuum aligned to 〈16H〉. As a consequence,
an SU(5) subgroup of the initial SO(10) gauge symmetry remains unbroken. In this respect, a renormalizable Higgs
sector with 126H ⊕ 126H in place of 16H ⊕ 16H suffers from the same “SU(5) lock”, since the GUT-scale 〈126H〉
exhibits an SU(5) little group as well.
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FIG. 1. Sample picture of gauge coupling unification in the E6 embedded SO(10)⊗ U(1)X model.

SO(10) SO(10)f

16F (Dc ⊕ L)5 ⊕ (Uc ⊕Q⊕ Ec)10 ⊕ (Nc)1 (Dc ⊕ Λc)5 ⊕ (∆c ⊕Q⊕ S)10 ⊕ (Nc)1

10F (∆⊕ Λc)5 ⊕ (∆c ⊕ Λ)5 (∆⊕ L)5 ⊕ (Uc ⊕ Λ)5
1F (S)1 (Ec)1

〈16H〉 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ sH)10 ⊕ (νH)1〈
16H

〉
(0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ sH)10 ⊕ (νH)1

TABLE XII. SM decomposition of SO(10) representations relevant for the Yukawa sector in the standard and flipped hypercharge
embedding. In the SO(10)f case B − L is assigned according to Eq. (53). A self-explanatory SM notation is used, with the subscripts
outside the brackets labelling the SU(5) origin. The SU(2)L doublets decompose as Q = (U, D), L = (N, E), Λ = (Λ0, Λ−) and
Λc = (Λc+, Λc0). Acordingly, 〈Hu〉 = (0, vu) and 〈Hd〉 = (vd, 0). The D-flatness constraint on the SM-singlet VEVs, sH and νH , is
taken into account.

A. Yukawa sector of the flipped SO(10) model

Considering for the purpose of the present discussion just one pair of spinor Higgs multiplts and imposing a Z2

matter-parity, negative for matter fields (F ) and positive for Higgs fields (H), the Yukawa superpotential reads

WY = YU 16F 10F 16H +
1

MP

[
YE 10F 1F 16H16H + YD 16F 16F 16H16H

]
, (105)

where we neglect O(M−2
P ) operators. Notice (see Table XIII) that because of the flipped embedding the up-quarks

receive mass at the renormalizable level, while all the other fermion masses are generated through Planck-suppressed
effective operators.

1. Mass matrices

In order to avoid 1/MP -pending factors we introduce the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and ŝH ≡ sH/MP .
The mass matrices (at the Mf scale) for the matter fields sharing the same unbroken SU(3)c ⊗ U(1)Q quantum
numbers can be extracted with the help of Table XIII. One readily obtains

Mu = YUvu , (106)

Md =

(
YDν̂Hvd YD ŝHvd

YUsH YUνH

)
, (107)

Me =

(
YE ν̂Hvd YUsH

YE ŝHvd YUνH

)
, (108)
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16F 10F 〈16H〉 10F 1F
〈
16H

〉 〈
16H

〉
16F 16F

〈
16H

〉 〈
16H

〉

(1) 10F 5F
〈
5H

〉
⊃ (QUc + SΛ) 〈Hu〉 (2) 5F 1F 〈5H〉

〈
1H

〉
⊃ ΛEc 〈Hd〉 νH (1) 1F 1F

〈
1H

〉 〈
1H

〉
⊃ NcNcν2

H

(1) 1F 5F
〈
5H

〉
⊃ NcL 〈Hu〉 (2) 5F 1F

〈
10H

〉
〈5H〉 ⊃ LEc 〈Hd〉 sH (1) 10F 10F

〈
10H

〉 〈
10H

〉
⊃ SSs2H

(1) 5F 5F 〈1H〉 ⊃ (Dc∆+Λ cL)νH (4) 10F 1F
〈
10H

〉 〈
1H

〉
⊃ SNcsHνH

(1) 5F 5F 〈10H〉 ⊃ ΛcΛsH (1) 5F 5F 〈5H〉 〈5H〉 ⊃ ΛcΛc 〈Hd〉 〈Hd〉
(1) 10F 5F 〈10H〉 ⊃ ∆c∆sH (4) 10F 5F

〈
10H

〉
〈5H〉 ⊃ (ΛcS +QDc) 〈Hd〉 sH

(2) 10F 10F 〈5H〉
〈
1H

〉
⊃ Q∆c 〈Hd〉 νH

(4) 5F 1F 〈5H〉
〈
1H

〉
⊃ ΛcNc 〈Hd〉 νH

TABLE XIII. Decomposition under flipped SU(5) and the SM of the invariants in Eq. (105). The number in round brackets stands for
the multiplicity of the invariant. The flipped SU(5) invariants 510F 11F

〈
10H

〉 〈
10H

〉
and 516F 116F

〈
10H

〉 〈
10H

〉
exhibit no SM invariant.

Mν =





0 0 YUsH 0 YUvu

0 0 YUνH YUvu 0

YUsH YUνH YDv̂dvd 2YDv̂dνH 2YDv̂dsH

0 YUvu 2YDν̂Hvd YDν̂HνH 2YDν̂HsH

YUvu 0 2YD ŝHvd 2YD ŝHνH YD ŝHsH




, (109)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d , Me → UeMe ≡ M ′
e , (111)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (112)

This corresponds to the change of basis

(
dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (113)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (112) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .
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the multiplicity of the invariant. The flipped SU(5) invariants 510F 11F
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


, (109)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d , Me → UeMe ≡ M ′
e , (111)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (112)

This corresponds to the change of basis

(
dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (113)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (112) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .
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TABLE XIII. Decomposition under flipped SU(5) and the SM of the invariants in Eq. (105). The number in round brackets stands for
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where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d ∼ O
(

v v

0 Mf

)
(111)

Me → UeMe ≡ M ′
e ∼ O

(
v 0

v Mf

)
(112)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (113)

This corresponds to the change of basis

(
dc

∆̃c

)
≡ Ud

(
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Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−
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)
, (114)
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where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d ∼ O
(

v v

0 Mf

)
(111)

Me → UeMe ≡ M ′
e ∼ O

(
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)
(112)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
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)
, M ′

e = O
(
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)
. (113)

This corresponds to the change of basis
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)
,
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TABLE XIII. Decomposition under flipped SU(5) and the SM of the invariants in Eq. (105). The number in round brackets stands for
the multiplicity of the invariant. The flipped SU(5) invariants 510F 11F
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, (109)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d , Me → UeMe ≡ M ′
e , (111)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (112)

This corresponds to the change of basis

(
dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (113)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (112) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .
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where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′
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)
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)
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where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′
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YUsH YUνH YDv̂dvd 2YDv̂dνH 2YDv̂dsH

0 YUvu 2YDν̂Hvd YDν̂HνH 2YDν̂HsH

YUvu 0 2YD ŝHvd 2YD ŝHνH YD ŝHsH




∼ O





0 0 Mf 0 v

0 0 Mf v 0

Mf Mf 0 v v

0 v v M2
f /MP 2M2

f /MP

v 0 v 2M2
f /MP M2

f /MP




(109)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d ∼ O
(

v v

0 Mf

)
(111)

Me → UeMe ≡ M ′
e ∼ O

(
v 0

v Mf

)
(112)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (113)

This corresponds to the change of basis

(
dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (114)

Up to a tiny              rotation           and           correspond to the light d.o.f. ,    
while            and               get a super-heavy mass
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in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (112) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .

It is useful to work out the explicit form of the unitary matrices Ud and Ue. Working for simplicity in the one-family
and real case approximation we can conveniently rewrite Md and Me as

Md =

(
vν vs

sH νH

)
, Me =

(
vν sH

vs νH

)
, (115)

and the matrices Ud and Ue are explicitly given by

Ud,e =

(
cosαd,e − sinαd,e

sinαd,e cosαd,e

)
. (116)

By applying Eq. (111) we get that M ′
d and M ′

e have the form in Eq. (112) provided that tanαd,e = sH/νH . In
particular, with a specific choice of the global phase, we can write

cosαd,e =
νH√

s2H + ν2H
, sinαd,e =

sH√
s2H + ν2H

, (117)

so that the mass eigenstates (up to O(v/Mf ) effects) are finally given by (see Eq. (113))
(

dc

∆̃c

)
=

1√
s2H + ν2H

(
νH∆c − sHDc

sH∆c + νHDc

)
, (118)

and
(

e

Λ̃−

)
=

1√
s2H + ν2H

(
νHΛ− − sHE

sHΛ− + νHE

)
, (119)

where the upper (SM) components have mass of O(v) and the lower (exotic) ones of O(Mf ).

iii) Neutrinos: Again in the one-family and real approximation the lightest eigenvalue of Mν in Eq. (109) is
approximatively given by

mν ∼ (ν2H + s2H)2 + 2s2Hν2H
3s2Hν2H(s2H + ν2H)

MP v
2
u . (120)

By taking sH ∼ νH ∼ Mf ∼ 1016 GeV MP ∼ 1018 GeV and vu ∼ 102 GeV one then obtains

mν ∼ v2u
M2

f /MP
∼ 0.1 eV , (121)

in the ball park of observation.
We need to examine also the composition of the lightest neutrino eigenstate ν. As a matter of fact the eigenvalue

equation Mνν = mνν, where ν = (v1, v2, v3, v4, v5)T , exhibit the very well approximated solution

sHv3 = 0 , (122)
νHv3 = 0 , (123)
sHv1 + νHv2 = 0 , (124)
ν̂HνHv4 + 2ν̂HsHv5 = 0 , (125)
2ŝHνHv4 + ŝHsHv5 = 0 . (126)

By inspection, Eqs. (124)–(125) are compatible only if v4 = v5 = 0, while Eqs. (121)–(122) imply v3 = 0. Thus, the
non-vanishing components of the neutrino eigenvector are just v1 and v2. From Eq. (123), up to a phase factor, we
obtain

ν =
νH√

ν2H + s2H
Λ0 +

−sH√
ν2H + s2H

N . (127)
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After the EW symmetry breaking the mass matrices for the matter fields sharing the 
same unbroken SU(3)C ⊗U(1)Q quantum numbers are
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By inspection, Eqs. (127)–(128) are compatible only if v4 = v5 = 0, while Eqs. (124)–(125) imply v3 = 0. Thus, the
non-vanishing components of the neutrino eigenvector are just v1 and v2. From Eq. (126), up to a phase factor, we
obtain

ν ∼ νH√
ν2H + s2H

Λ0 − sH√
ν2H + s2H

N . (129)

Λ̃0 ∼ νH√
ν2H + s2H

Λ0 +
sH√

ν2H + s2H
N . (130)

Notice that the lightest neutrino eigenvector ν and the lightest charged lepton share the same admixtures of weak
doublets. Actually this coincidence can be easily understood by taking the limit vu = vd = 0 in which the preserved
SU(2)L gauge symmetry imposes that the Ue transformation which diagonalizes Me is also responsible for the block-
diagonalization of the neutrino mass matrix M ′

ν = U∗
eMνU †

e . Explicitly, given the form of Ue in Eq. (117) acting on
the (Λ0, N) components, one obtains

M ′
ν ∼





0 0 0 0 0

0 0 Mf 0 0

0 Mf 0 0 0

0 0 0
M2

f

MP
2
M2

f

MP

0 0 0 2
M2

f

MP

M2
f

MP





, (131)

where we have taken sH ∼ νH ∼ Mf . M ′
ν is now defined on the basis (ν, Λ̃0,Λc0, N c, S), where

(
ν

Λ̃0

)
∼ 1√

2

(
Λ0 −N

Λ0 +N

)
. (132)

In conclusion, we see that the ”light” eigenstate ν (massless because of the vu = vd = 0 assumption) decouples from
the heavy spectrum,

mνM1
∼ −M2

f /MP νM1 ∼ 1√
2
(N c − S) , (133)

mνM2
∼ 3 ·M2

f /MP νM2 ∼ 1√
2
(N c + S) , (134)

mνPD1
∼ −Mf νPD1 ∼ 1√

2
(Λ̃0 − Λc0) , (135)

mνPD2
∼ Mf νPD2 ∼ 1√

2
(Λ̃0 + Λc0) , (136)

where νM1 and νM2 are two Majorana neutrinos of intermediate mass, O(1014) GeV, while the states νPD1 and νPD2

form a pseudo-Dirac neutrino of mass of O(1016) GeV.
Notice finally that the charged current WLνLeL coupling is unaffected (c.f. Eq. (129) with Eq. (120)), contrary to

the claim in Refs. [27] and [28], that are based on the unjustified assumption that the physical electron e is made
mainly by E.

〈16H〉 & 〈45H〉 (137)

(∆)(∆̃c) (138)

(Λ̃−)(Λc+) (139)

VI. CONCLUSIONS

In this paper we attempted to pin down the minimal Higgs setting within the framework of the supersymmetric
SO(10) and E6 unifications, consistent with a breaking of the unified gauge symmetry down to the SU(3)c⊗SU(2)L⊗
U(1)Y of the Standard Model, driven by the renormalizable part of the Higgs potential.
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f

MP
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M2

f
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M2

f

MP

M2
f
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1. Mass matrices

In order to avoid 1/MP -pending factors we introduce the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and êH ≡ eH/MP .
The mass matrices (at the Mf scale) for the matter fields sharing the same unbroken SU(3)c ⊗ U(1)Q quantum
numbers can be extracted with the help of Table XV. One readily obtains

Mu = YUvu , (143)

Md =

(
YDν̂Hvd YD êHvd

YUeH YUνH

)
∼ O

(
v v

Mf Mf

)
(144)

Me =

(
YE ν̂Hvd YUeH

YE êHvd YUνH

)
∼ O

(
v Mf

v Mf

)
(145)

Mν =





0 0 YUsH 0 YUvu

0 0 YUνH YUvu 0

YUsH YUνH YDv̂dvd 2YDv̂dνH 2YDv̂dsH

0 YUvu 2YDν̂Hvd YDν̂HνH 2YDν̂HsH

YUvu 0 2YD ŝHvd 2YD ŝHνH YD ŝHsH




∼ O





0 0 Mf 0 v

0 0 Mf v 0

Mf Mf 0 v v

0 v v M2
f /MP 2M2

f /MP

v 0 v 2M2
f /MP M2

f /MP




(146)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (143)–(146).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (143)

Mu = YUvu . (147)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (144)–(145) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d ∼ O
(

v v

0 Mf

)
(148)

Me → UeMe ≡ M ′
e ∼ O

(
v 0

v Mf

)
(149)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (150)

This corresponds to the change of basis
(

dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (151)
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SO(10) SO(10)f

16F (Dc ⊕ L)5 ⊕ (Uc ⊕Q⊕ Ec)10 ⊕ (Nc)1 (Dc ⊕ Λc)5 ⊕ (∆c ⊕Q⊕ S)10 ⊕ (Nc)1

10F (∆⊕ Λc)5 ⊕ (∆c ⊕ Λ)5 (∆⊕ L)5 ⊕ (Uc ⊕ Λ)5
1F (S)1 (Ec)1

〈16H〉 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ eH)10 ⊕ (νH)1〈
16H

〉
(0⊕ 〈Hu〉)5 ⊕ (0⊕ 0⊕ 0)10 ⊕ (νH)1 (0⊕ 〈Hd〉)5 ⊕ (0⊕ 0⊕ eH)10 ⊕ (νH)1

TABLE XIV. SM decomposition of SO(10) representations relevant for the Yukawa sector in the standard and flipped hypercharge
embedding. In the SO(10)f case B − L is assigned according to Eq. (61). A self-explanatory SM notation is used, with the subscripts
outside the brackets labelling the SU(5) origin. The SU(2)L doublets decompose as Q = (U, D), L = (N, E), Λ = (Λ0, Λ−) and
Λc = (Λc+, Λc0). Acordingly, 〈Hu〉 = (0, vu) and 〈Hd〉 = (vd, 0). The D-flatness constraint on the SM-singlet VEVs, sH and νH , is
taken into account.

16F 10F 〈16H〉 10F 1F
〈
16H

〉 〈
16H

〉
16F 16F

〈
16H

〉 〈
16H

〉

(1) 10F 5F
〈
5H

〉
⊃ (QUc + SΛ) 〈Hu〉 (2) 5F 1F 〈5H〉

〈
1H

〉
⊃ ΛEc 〈Hd〉 νH (1) 1F 1F

〈
1H

〉 〈
1H

〉
⊃ NcNcν2

H

(1) 1F 5F
〈
5H

〉
⊃ NcL 〈Hu〉 (2) 5F 1F

〈
10H

〉
〈5H〉 ⊃ LEc 〈Hd〉 sH (1) 10F 10F

〈
10H

〉 〈
10H

〉
⊃ SSs2H

(1) 5F 5F 〈1H〉 ⊃ (Dc∆+Λ cL)νH (4) 10F 1F
〈
10H

〉 〈
1H

〉
⊃ SNcsHνH

(1) 5F 5F 〈10H〉 ⊃ ΛcΛsH (1) 5F 5F 〈5H〉 〈5H〉 ⊃ ΛcΛc 〈Hd〉 〈Hd〉
(1) 10F 5F 〈10H〉 ⊃ ∆c∆sH (4) 10F 5F

〈
10H

〉
〈5H〉 ⊃ (ΛcS +QDc) 〈Hd〉 sH

(2) 10F 10F 〈5H〉
〈
1H

〉
⊃ Q∆c 〈Hd〉 νH

(4) 5F 1F 〈5H〉
〈
1H

〉
⊃ ΛcNc 〈Hd〉 νH

TABLE XV. Decomposition under flipped SU(5) and the SM of the invariants in Eq. (148). The number in round brackets stands for
the multiplicity of the invariant. The flipped SU(5) invariants 510F 11F

〈
10H

〉 〈
10H

〉
and 516F 116F

〈
10H

〉 〈
10H

〉
exhibit no SM invariant.

A. Yukawa sector of the flipped SO(10) model

Considering for the purpose of the present discussion just one pair of spinor Higgs multiplts and imposing a Z2

matter-parity, negative for matter fields (F ) and positive for Higgs fields (H), the Yukawa superpotential reads

WY = YU 16F 10F 16H +
1

MP

[
YE 10F 1F 16H16H + YD 16F 16F 16H16H

]
, (148)

where we neglect O(M−2
P ) operators. Notice (see Table XV) that because of the flipped embedding the up-quarks

receive mass at the renormalizable level, while all the other fermion masses are generated through Planck-suppressed
effective operators.

1. Mass matrices

v̂d ≡ vd/MP

ν̂H ≡ νH/MP

êH ≡ eH/MP

In order to avoid 1/MP -pending factors we introduce the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and êH ≡ eH/MP .
The mass matrices (at the Mf scale) for the matter fields sharing the same unbroken SU(3)c ⊗ U(1)Q quantum
numbers can be extracted with the help of Table XV. One readily obtains

Mu = YUvu , (149)

Md =

(
YDν̂Hvd YD êHvd

YUeH YUνH

)
∼ O

(
v v

Mf Mf

)
(150)

Me =

(
YE ν̂Hvd YUeH

YE êHvd YUνH

)
∼ O

(
v Mf

v Mf

)
(151)
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A. Yukawa sector of the flipped SO(10) model

Considering for the purpose of the present discussion just one pair of spinor Higgs multiplts and imposing a Z2

matter-parity, negative for matter fields (F ) and positive for Higgs fields (H), the Yukawa superpotential reads

WY = YU 16F 10F 16H +
1

MP

[
YE 10F 1F 16H16H + YD 16F 16F 16H16H

]
, (148)

where we neglect O(M−2
P ) operators. Notice (see Table XV) that because of the flipped embedding the up-quarks

receive mass at the renormalizable level, while all the other fermion masses are generated through Planck-suppressed
effective operators.

1. Mass matrices

v̂d ≡ vd/MP

ν̂H ≡ νH/MP

êH ≡ eH/MP

In order to avoid 1/MP -pending factors we introduce the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and êH ≡ eH/MP .
The mass matrices (at the Mf scale) for the matter fields sharing the same unbroken SU(3)c ⊗ U(1)Q quantum
numbers can be extracted with the help of Table XV. One readily obtains

Mu = YUvu , (149)

Md =

(
YDν̂Hvd YD êHvd

YUeH YUνH

)
∼ O

(
v v

Mf Mf

)
(150)

Me =

(
YE ν̂Hvd YUeH

YE êHvd YUνH

)
∼ O

(
v Mf

v Mf

)
(151)



MASS MATRICES (NEUTRINOS)

Working in the one family approximation, for the lightest neutrino we get 
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16F 10F 〈16H〉 10F 1F
〈
16H

〉 〈
16H

〉
16F 16F

〈
16H

〉 〈
16H

〉

(1) 10F 5F
〈
5H

〉
⊃ (QUc + SΛ) 〈Hu〉 (2) 5F 1F 〈5H〉

〈
1H

〉
⊃ ΛEc 〈Hd〉 νH (1) 1F 1F

〈
1H

〉 〈
1H

〉
⊃ NcNcν2

H

(1) 1F 5F
〈
5H

〉
⊃ NcL 〈Hu〉 (2) 5F 1F

〈
10H

〉
〈5H〉 ⊃ LEc 〈Hd〉 sH (1) 10F 10F

〈
10H

〉 〈
10H

〉
⊃ SSs2H

(1) 5F 5F 〈1H〉 ⊃ (Dc∆+Λ cL)νH (4) 10F 1F
〈
10H

〉 〈
1H

〉
⊃ SNcsHνH

(1) 5F 5F 〈10H〉 ⊃ ΛcΛsH (1) 5F 5F 〈5H〉 〈5H〉 ⊃ ΛcΛc 〈Hd〉 〈Hd〉
(1) 10F 5F 〈10H〉 ⊃ ∆c∆sH (4) 10F 5F

〈
10H

〉
〈5H〉 ⊃ (ΛcS +QDc) 〈Hd〉 sH

(2) 10F 10F 〈5H〉
〈
1H

〉
⊃ Q∆c 〈Hd〉 νH

(4) 5F 1F 〈5H〉
〈
1H

〉
⊃ ΛcNc 〈Hd〉 νH

TABLE XIII. Decomposition under flipped SU(5) and the SM of the invariants in Eq. (105). The number in round brackets stands for
the multiplicity of the invariant. The flipped SU(5) invariants 510F 11F

〈
10H

〉 〈
10H

〉
and 516F 116F

〈
10H

〉 〈
10H

〉
exhibit no SM invariant.

Mν =





0 0 YUsH 0 YUvu

0 0 YUνH YUvu 0

YUsH YUνH YDv̂dvd 2YDv̂dνH 2YDv̂dsH

0 YUvu 2YDν̂Hvd YDν̂HνH 2YDν̂HsH

YUvu 0 2YD ŝHvd 2YD ŝHνH YD ŝHsH




, (109)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (106)–(109).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (106)

Mu = YUvu . (110)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (107)–(108) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d , Me → UeMe ≡ M ′
e , (111)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (112)

This corresponds to the change of basis

(
dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (113)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (112) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .
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By inspection, Eqs. (127)–(128) are compatible only if v4 = v5 = 0, while Eqs. (124)–(125) imply v3 = 0. Thus, the
non-vanishing components of the neutrino eigenvector are just v1 and v2. From Eq. (126), up to a phase factor, we
obtain

ν ∼ νH√
ν2H + s2H

Λ0 +
−sH√
ν2H + s2H

N . (129)

Notice that the lightest neutrino eigenvector ν and the lightest charged lepton share the same admixtures of weak
doublets. Actually this coincidence can be easily understood by taking the limit vu = vd = 0 in which the preserved
SU(2)L gauge symmetry imposes that the Ue transformation which diagonalizes Me is also responsible for the block-
diagonalization of the neutrino mass matrix M ′

ν = U∗
eMνU †

e . Explicitly, given the form of Ue in Eq. (117) acting on
the (Λ0, N) components, one obtains

M ′
ν ∼





0 0 0 0 0

0 0 Mf 0 0

0 Mf 0 0 0

0 0 0
M2

f

MP
2
M2

f

MP

0 0 0 2
M2

f

MP

M2
f

MP





, (130)

where we have taken sH ∼ νH ∼ Mf . M ′
ν is now defined on the basis (ν, Λ̃0,Λc0, N c, S), where

(
ν

Λ̃0

)
∼ 1√

2

(
Λ0 −N

Λ0 +N

)
. (131)

In conclusion, we see that the ”light” eigenstate ν (massless because of the vu = vd = 0 assumption) decouples from
the heavy spectrum,

mνM1
∼ −M2

f /MP νM1 ∼ 1√
2
(N c − S) , (132)

mνM2
∼ 3 ·M2

f /MP νM2 ∼ 1√
2
(N c + S) , (133)

mνPD1
∼ −Mf νPD1 ∼ 1√

2
(Λ̃0 − Λc0) , (134)

mνPD2
∼ Mf νPD2 ∼ 1√

2
(Λ̃0 + Λc0) , (135)

where νM1 and νM2 are two Majorana neutrinos of intermediate mass, O(1014) GeV, while the states νPD1 and νPD2

form a pseudo-Dirac neutrino of mass of O(1016) GeV.
Notice finally that the charged current WLνLeL coupling is unaffected (c.f. Eq. (129) with Eq. (120)), contrary to

the claim in Refs. [27] and [28], that are based on the unjustified assumption that the physical electron e is made
mainly by E.

VI. CONCLUSIONS

In this paper we attempted to pin down the minimal Higgs setting within the framework of the supersymmetric
SO(10) and E6 unifications, consistent with a breaking of the unified gauge symmetry down to the SU(3)c⊗SU(2)L⊗
U(1)Y of the Standard Model, driven by the renormalizable part of the Higgs potential.

The renormalizable-level breaking of the GUT symmetries down to the SM is a very interesting option which, apart
from simplicity, is supported by the single-step gauge unification obtained in the TeV-scale minimla SUSY extension
of the SM. Indeed, if any part of the GUT → SM symmetry breakdown were due to non-renormalizable (Planck
induced) operators, one is inevitably faced with a plethora of thresholds spread below the GUT scale, which may
affect the gauge running and, in principle, the proton lifetime as well.

On top of that, the B−L breaking scale in the vicinity ofMG ∼ 1016 GeV is particularly favored by the experimental
lower limit (of the order of

√
∆m2

A) on the light neutrino mass scale in models in which the RH neutrinos, driving
a variant of the seesaw mechanism, receive their masses from Planck-suppressed operators, just as in the simplest
scenarios discussed above.

We have argued that the simplest SUSY SO(10) Higgs model that can support a full breaking of the unified
symmetry down to the SM at the renormalizable level, is given by flipped SO(10) ⊗ U(1) with a 2 × (16 ⊕ 16) ⊕ 45
Higgs sector. It is namely the enhanced breaking power of the spinorial pairs 16⊕ 16 as well as of the adjoint 45 in
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1. Mass matrices

In order to avoid 1/MP -pending factors we introduce the notation v̂d ≡ vd/MP , ν̂H ≡ νH/MP and êH ≡ eH/MP .
The mass matrices (at the Mf scale) for the matter fields sharing the same unbroken SU(3)c ⊗ U(1)Q quantum
numbers can be extracted with the help of Table XV. One readily obtains

Mu = YUvu , (143)

Md =

(
YDν̂Hvd YD êHvd

YUeH YUνH

)
∼ O

(
v v

Mf Mf

)
(144)

Me =

(
YE ν̂Hvd YUeH

YE êHvd YUνH

)
∼ O

(
v Mf

v Mf

)
(145)

Mν =





0 0 YUeH 0 YUvu

0 0 YUνH YUvu 0

YUeH YUνH YDv̂dvd 2YDv̂dνH 2YDv̂deH

0 YUvu 2YDν̂Hvd YDν̂HνH 2YDν̂HeH

YUvu 0 2YD êHvd 2YD êHνH YD êHeH




∼ O





0 0 Mf 0 v

0 0 Mf v 0

Mf Mf 0 v v

0 v v M2
f /MP 2M2

f /MP

v 0 v 2M2
f /MP M2

f /MP




(146)

where for convenience we redefined YD → YD/2 and YE → YE/2. The basis (U)(U c) is used for Mu, (D,∆)(∆c, Dc)
for Md and (Λ−, E)(Ec,Λc+) for Me. The Majorana mass matrix Mν is given on the basis (Λ0, N,Λc0, N c, S).

2. Effective mass matrices

Below the Mf ∼ sH ∼ νH scale, the exotic (vector) part of the matter spectrum decouples, leaving the three
standard MSSM families. As we will see, it is rather nontrivial that both the absolute value and the known weak
properties of the light neutrino spectrum are naturally accommodated in such a scenario.
In what follows, we shall use the calligraphic symbols Mf (with f = u, d, e, ν) for the effective MSSM mass matrices

in order to distinguish them from the Mf -scale mass matrices in Eqs. (143)–(146).

i) Up-type quarks: The effective up-quark mass matrix is identical to the mass matrix in Eq. (143)

Mu = YUvu . (147)

ii) Down-type quarks and charged leptons: The 6 × 6 mass matrices in Eqs. (144)–(145) can be brought into a
convenient form by means of the transformations

Md → MdU
†
d ≡ M ′

d ∼ O
(

v v

0 Mf

)
(148)

Me → UeMe ≡ M ′
e ∼ O

(
v 0

v Mf

)
(149)

where Ud,e are 6× 6 unitary matrices such that M ′
d and M ′

e are block-triangular

M ′
d = O

(
v v

0 Mf

)
, M ′

e = O
(

v 0

v Mf

)
. (150)

This corresponds to the change of basis
(

dc

∆̃c

)
≡ Ud

(
∆c

Dc

)
,

(
e

Λ̃−

)
≡ U∗

e

(
Λ−

E

)
, (151)
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By inspection, Eqs. (164)–(165) are compatible only if v4 = v5 = 0, while Eqs. (161)–(162) imply v3 = 0. Thus, the
non-vanishing components of the neutrino eigenvector are just v1 and v2. From Eq. (163), up to a phase factor, we
obtain

ν ∼ νH√
ν2H + e2H

Λ0 − eH√
ν2H + e2H

N . (166)

Λ̃0 ∼ νH√
ν2H + e2H

Λ0 +
eH√

ν2H + e2H
N . (167)

Notice that the lightest neutrino eigenvector ν and the lightest charged lepton share the same admixtures of weak
doublets. Actually this coincidence can be easily understood by taking the limit vu = vd = 0 in which the preserved
SU(2)L gauge symmetry imposes that the Ue transformation which diagonalizes Me is also responsible for the block-
diagonalization of the neutrino mass matrix M ′

ν = U∗
eMνU†

e . Explicitly, given the form of Ue in Eq. (154) acting on
the (Λ0, N) components, one obtains

M ′
ν ∼





0 0 0 0 0

0 0 Mf 0 0

0 Mf 0 0 0

0 0 0
M2

f

MP
2
M2

f

MP

0 0 0 2
M2

f

MP

M2
f

MP





, (168)

where we have taken sH ∼ νH ∼ Mf . M ′
ν is now defined on the basis (ν, Λ̃0,Λc0, N c, S), where

(
ν

Λ̃0

)
∼ 1√

2

(
Λ0 −N

Λ0 +N

)
. (169)

In conclusion, we see that the ”light” eigenstate ν (massless because of the vu = vd = 0 assumption) decouples from
the heavy spectrum,

mνM1
∼ −M2

f /MP νM1 ∼ 1√
2
(N c − S) , (170)

mνM2
∼ 3 ·M2

f /MP νM2 ∼ 1√
2
(N c + S) , (171)

mνPD1
∼ −Mf νPD1 ∼ 1√

2
(Λ̃0 − Λc0) , (172)

mνPD2
∼ Mf νPD2 ∼ 1√

2
(Λ̃0 + Λc0) , (173)

where νM1 and νM2 are two Majorana neutrinos of intermediate mass, O(1014) GeV, while the states νPD1 and νPD2

form a pseudo-Dirac neutrino of mass of O(1016) GeV.
Notice finally that the charged current WLνLeL coupling is unaffected (c.f. Eq. (166) with Eq. (157)), contrary to

the claim in Refs. [27] and [28], that are based on the unjustified assumption that the physical electron e is made
mainly by E.

〈16H〉 & 〈45H〉 (174)

(∆)(∆̃c) (175)

(Λ̃−)(Λc+) (176)

VII. CONCLUSIONS

In this paper we attempted to pin down the minimal Higgs setting within the framework of the supersymmetric
SO(10) and E6 unifications, consistent with a breaking of the unified gauge symmetry down to the SU(3)c⊗SU(2)L⊗
U(1)Y of the Standard Model, driven by the renormalizable part of the Higgs potential.
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VII. CONCLUSIONS

In this paper we attempted to pin down the minimal Higgs setting within the framework of the supersymmetric
SO(10) and E6 unifications, consistent with a breaking of the unified gauge symmetry down to the SU(3)c⊗SU(2)L⊗
U(1)Y of the Standard Model, driven by the renormalizable part of the Higgs potential.

Setting                 and working in the basis                        the heavy spectrum reads
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(D)(dc) and (e)(Ec) (115)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (113) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .

It is useful to work out the explicit form of the unitary matrices Ud and Ue. Working for simplicity in the one-family
and real case approximation we can conveniently rewrite Md and Me as

Md =

(
vν vs

sH νH

)
, Me =

(
vν sH

vs νH

)
, (116)

and the matrices Ud and Ue are explicitly given by

Ud,e =

(
cosαd,e − sinαd,e

sinαd,e cosαd,e

)
. (117)

By applying Eq. (111) we get that M ′
d and M ′

e have the form in Eq. (113) provided that tanαd,e = sH/νH . In
particular, with a specific choice of the global phase, we can write

cosαd,e =
νH√

s2H + ν2H
, sinαd,e =

sH√
s2H + ν2H

, (118)

so that the mass eigenstates (up to O(v/Mf ) effects) are finally given by (see Eq. (114))
(

dc

∆̃c

)
=

1√
s2H + ν2H

(
νH∆c − sHDc

sH∆c + νHDc

)
, (119)

and
(

e

Λ̃−

)
=

1√
s2H + ν2H

(
νHΛ− − sHE

sHΛ− + νHE

)
, (120)

where the upper (SM) components have mass of O(v) and the lower (exotic) ones of O(Mf ).

iii) Neutrinos: Again in the one-family and real approximation the lightest eigenvalue of Mν in Eq. (109) is
approximatively given by

mν ∼ (ν2H + s2H)2 + 2s2Hν2H
3s2Hν2H(s2H + ν2H)

MP v
2
u . (121)

By taking sH ∼ νH ∼ Mf ∼ 1016 GeV MP ∼ 1018 GeV and vu ∼ 102 GeV one then obtains

mν ∼ v2u
M2

f /MP
∼ 0.1 eV , (122)

in the ball park of observation.

vu ∼ vd ∼ 0 (123)

We need to examine also the composition of the lightest neutrino eigenstate ν. As a matter of fact the eigenvalue
equation Mνν = mνν, where ν = (v1, v2, v3, v4, v5)T , exhibit the very well approximated solution

sHv3 = 0 , (124)
νHv3 = 0 , (125)
sHv1 + νHv2 = 0 , (126)
ν̂HνHv4 + 2ν̂HsHv5 = 0 , (127)
2ŝHνHv4 + ŝHsHv5 = 0 . (128)
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By inspection, Eqs. (127)–(128) are compatible only if v4 = v5 = 0, while Eqs. (124)–(125) imply v3 = 0. Thus, the
non-vanishing components of the neutrino eigenvector are just v1 and v2. From Eq. (126), up to a phase factor, we
obtain

ν ∼ νH√
ν2H + s2H

Λ0 +
−sH√
ν2H + s2H

N . (129)

Notice that the lightest neutrino eigenvector ν and the lightest charged lepton share the same admixtures of weak
doublets. Actually this coincidence can be easily understood by taking the limit vu = vd = 0 in which the preserved
SU(2)L gauge symmetry imposes that the Ue transformation which diagonalizes Me is also responsible for the block-
diagonalization of the neutrino mass matrix M ′

ν = U∗
eMνU †

e . Explicitly, given the form of Ue in Eq. (117) acting on
the (Λ0, N) components, one obtains

M ′
ν ∼





0 0 0 0 0

0 0 Mf 0 0

0 Mf 0 0 0

0 0 0
M2

f

MP
2
M2

f

MP

0 0 0 2
M2

f

MP

M2
f

MP





, (130)

where we have taken sH ∼ νH ∼ Mf . M ′
ν is now defined on the basis (ν, Λ̃0,Λc0, N c, S), where

(
ν

Λ̃0

)
∼ 1√

2

(
Λ0 −N

Λ0 +N

)
. (131)

In conclusion, we see that the ”light” eigenstate ν (massless because of the vu = vd = 0 assumption) decouples from
the heavy spectrum,

mνM1
∼ −M2

f /MP νM1 ∼ 1√
2
(N c − S) , (132)

mνM2
∼ 3 ·M2

f /MP νM2 ∼ 1√
2
(N c + S) , (133)

mνPD1
∼ −Mf νPD1 ∼ 1√

2
(Λ̃0 − Λc0) , (134)

mνPD2
∼ Mf νPD2 ∼ 1√

2
(Λ̃0 + Λc0) , (135)

where νM1 and νM2 are two Majorana neutrinos of intermediate mass, O(1014) GeV, while the states νPD1 and νPD2

form a pseudo-Dirac neutrino of mass of O(1016) GeV.
Notice finally that the charged current WLνLeL coupling is unaffected (c.f. Eq. (129) with Eq. (120)), contrary to

the claim in Refs. [27] and [28], that are based on the unjustified assumption that the physical electron e is made
mainly by E.

VI. CONCLUSIONS

In this paper we attempted to pin down the minimal Higgs setting within the framework of the supersymmetric
SO(10) and E6 unifications, consistent with a breaking of the unified gauge symmetry down to the SU(3)c⊗SU(2)L⊗
U(1)Y of the Standard Model, driven by the renormalizable part of the Higgs potential.

The renormalizable-level breaking of the GUT symmetries down to the SM is a very interesting option which, apart
from simplicity, is supported by the single-step gauge unification obtained in the TeV-scale minimla SUSY extension
of the SM. Indeed, if any part of the GUT → SM symmetry breakdown were due to non-renormalizable (Planck
induced) operators, one is inevitably faced with a plethora of thresholds spread below the GUT scale, which may
affect the gauge running and, in principle, the proton lifetime as well.

On top of that, the B−L breaking scale in the vicinity ofMG ∼ 1016 GeV is particularly favored by the experimental
lower limit (of the order of

√
∆m2

A) on the light neutrino mass scale in models in which the RH neutrinos, driving
a variant of the seesaw mechanism, receive their masses from Planck-suppressed operators, just as in the simplest
scenarios discussed above.

We have argued that the simplest SUSY SO(10) Higgs model that can support a full breaking of the unified
symmetry down to the SM at the renormalizable level, is given by flipped SO(10) ⊗ U(1) with a 2 × (16 ⊕ 16) ⊕ 45
Higgs sector. It is namely the enhanced breaking power of the spinorial pairs 16⊕ 16 as well as of the adjoint 45 in
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(D)(dc) and (e)(Ec) (115)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (113) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .

It is useful to work out the explicit form of the unitary matrices Ud and Ue. Working for simplicity in the one-family
and real case approximation we can conveniently rewrite Md and Me as

Md =

(
vν vs

sH νH

)
, Me =

(
vν sH

vs νH

)
, (116)

and the matrices Ud and Ue are explicitly given by

Ud,e =

(
cosαd,e − sinαd,e

sinαd,e cosαd,e

)
. (117)

By applying Eq. (111) we get that M ′
d and M ′

e have the form in Eq. (113) provided that tanαd,e = sH/νH . In
particular, with a specific choice of the global phase, we can write

cosαd,e =
νH√

s2H + ν2H
, sinαd,e =

sH√
s2H + ν2H

, (118)

so that the mass eigenstates (up to O(v/Mf ) effects) are finally given by (see Eq. (114))

(
dc

∆̃c

)
=

1√
s2H + ν2H

(
νH∆c − sHDc

sH∆c + νHDc

)
, (119)

and
(

e

Λ̃−

)
=

1√
s2H + ν2H

(
νHΛ− − sHE

sHΛ− + νHE

)
, (120)

where the upper (SM) components have mass of O(v) and the lower (exotic) ones of O(Mf ).

iii) Neutrinos: Again in the one-family and real approximation the lightest eigenvalue of Mν in Eq. (109) is
approximatively given by

mν ∼ (ν2H + s2H)2 + 2s2Hν2H
3s2Hν2H(s2H + ν2H)

MP v
2
u . (121)

By taking sH ∼ νH ∼ Mf ∼ 1016 GeV MP ∼ 1018 GeV and vu ∼ 102 GeV one then obtains

mν ∼ v2u
M2

f /MP
∼ 0.1 eV , (122)

in the ball park of observation.
We need to examine also the composition of the lightest neutrino eigenstate ν. As a matter of fact the eigenvalue

equation Mνν = mνν, where ν = (v1, v2, v3, v4, v5)T , exhibit the very well approximated solution

sHv3 = 0 , (123)
νHv3 = 0 , (124)
sHv1 + νHv2 = 0 , (125)
ν̂HνHv4 + 2ν̂HsHv5 = 0 , (126)
2ŝHνHv4 + ŝHsHv5 = 0 . (127)

28

(D)(dc) and (e)(Ec) (152)

in the right-handed (RH) down quark and left-handed (LH) charged lepton sectors, respectively. The upper compo-
nents of the rotated vectors (dc and e) correspond to the light MSSM degrees of freedom. Since the residual rotations
acting on the LH down quark and RH charged lepton components that transform the M ′

d,e matrices into fully block-
diagonal forms, are extremely tiny (of O(v/Mf )), the 3×3 upper-left blocks (ULB) in Eq. (150) can be identified with
the effective light down-type quark and charged lepton mass matrices, i.e., Md ≡ (M ′

d)ULB and Me ≡ (M ′
e)ULB .

It is useful to work out the explicit form of the unitary matrices Ud and Ue. Working for simplicity in the one-family
and real case approximation we can conveniently rewrite Md and Me as

Md =

(
vν vs

sH νH

)
, Me =

(
vν sH

vs νH

)
, (153)

and the matrices Ud and Ue are explicitly given by

Ud,e =

(
cosαd,e − sinαd,e

sinαd,e cosαd,e

)
. (154)

By applying Eq. (148) we get that M ′
d and M ′

e have the form in Eq. (150) provided that tanαd,e = sH/νH . In
particular, with a specific choice of the global phase, we can write

cosαd,e =
νH√

s2H + ν2H
, sinαd,e =

sH√
s2H + ν2H

, (155)

so that the mass eigenstates (up to O(v/Mf ) effects) are finally given by (see Eq. (151))
(

dc

∆̃c

)
=

1√
s2H + ν2H

(
νH∆c − sHDc

sH∆c + νHDc

)
, (156)

and
(

e

Λ̃−

)
=

1√
s2H + ν2H

(
νHΛ− − sHE

sHΛ− + νHE

)
, (157)

where the upper (SM) components have mass of O(v) and the lower (exotic) ones of O(Mf ).

iii) Neutrinos: Again in the one-family and real approximation the lightest eigenvalue of Mν in Eq. (146) is
approximatively given by

mν ∼ (ν2H + e2H)2 + 2e2Hν2H
3e2Hν2H(e2H + ν2H)

MP v
2
u . (158)

By taking sH ∼ νH ∼ Mf ∼ 1016 GeV MP ∼ 1018 GeV and vu ∼ 102 GeV one then obtains

mν ∼ v2u
M2

f /MP
∼ 0.1 eV , (159)

in the ball park of observation.

vu ∼ vd ∼ 0 (160)

We need to examine also the composition of the lightest neutrino eigenstate ν. As a matter of fact the eigenvalue
equation Mνν = mνν, where ν = (v1, v2, v3, v4, v5)T , exhibit the very well approximated solution

sHv3 = 0 , (161)
νHv3 = 0 , (162)
sHv1 + νHv2 = 0 , (163)
ν̂HνHv4 + 2ν̂HsHv5 = 0 , (164)
2ŝHνHv4 + ŝHsHv5 = 0 . (165)
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By taking eH ∼ νH ∼ Mf ∼ 1016 GeV MP ∼ 1018 GeV and vu ∼ 102 GeV one then obtains
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∼ 0.1 eV , (159)

in the ball park of observation.
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sHv3 = 0 , (161)
νHv3 = 0 , (162)
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ν̂HνHv4 + 2ν̂HsHv5 = 0 , (164)
2ŝHνHv4 + ŝHsHv5 = 0 . (165)



COMPARATIVE SUMMARY

5

Standard SO(10) Flipped SO(10)⊗ U(1)

Higgs superfields R NR R NR

16⊕ 16 SO(10) SU(5) SO(10)⊗ U(1) SU(5)⊗ U(1)

2×
(
16⊕ 16

)
SO(10) SU(5) SO(10)⊗ U(1) SM

45⊕ 16⊕ 16 SU(5) SM SU(5)⊗ U(1) SM⊗ U(1)

45⊕ 2×
(
16⊕ 16

)
SU(5) SM SM SM

2× 45⊕ 16⊕ 16 SU(5) SM SU(5)⊗ U(1) SM⊗ U(1)

TABLE I. Comparative summary of supersymmetric vacua left invariant by the SM singlet VEVs in various combinations of spinorial and
adjoint Higgs representations of standard SO(10) and flipped SO(10)⊗U(1). The results for a renormalizable (R) and a non-renormalizable
(NR) Higgs superpotential are respectively listed.

Higgs superfields R NR

27⊕ 27 E6 SO(10)

2×
(
27⊕ 27

)
E6 SU(5)

78⊕ 27⊕ 27 SO(10) SM⊗ U(1)

78⊕ 2×
(
27⊕ 27

)
SU(5) SM

2× 78⊕ 2×
(
27⊕ 27

)
SU(5) SM

TABLE II. Same as in Table I for the E6 gauge group with fundamental and adjoint Higgs representations.

III. MINIMAL FLIPPED SO(10) HIGGS MODEL

As already anticipated in the previous sections, in a standard SO(10) framework with a Higgs sector built off
lowest-dimensional representations (up to the adjoint) it is rather difficult to achieve a phenomenologically viable
symmetry breaking pattern even admitting multiple copies of each type of multiplets. Firstly, with a single 45H at
play, at the renormalizable-level the little group of all SM singlet VEVs is SU(5) regardless of the number of 16H⊕16H
pairs. The obvious reason being that one can not get anything more that an SU(5) singlet out of a number of SU(5)
singlets. The same is true with a second 45H added into the Higgs sector because there is no renormalizable mixing
among the two 45H ’s apart from the mass term that, without loss of generality, can be taken diagonal.

In Tables I and II we collect a list of the supersymmetric vacua that are obtained in SO(10) models and potential
E6 embeddings considering a set of Higgs representations of dimension of adjoint and smaller, with all SM singlet
VEVs turned on. The cases of a renormalizable or NR Higgs potential are compared. We quote reference papers
where results relevant for the present study were obtained without any aim of exhausting the available literature. The
results without reference are either verified by us or follow by comparison with other cases and rank counting. The
results presented in this paper are emphasized in bold.

Not considering one-step breaking GUT scenarios via a NR Higgs sector, which raise the phenomenological issues
discussed in Sect. II), while requiring Higgs representations of the dimension of the adjoint or smaller (also in consid-
eration of a simple E6 embedding), the SM can be reached from standard SO(10) via a renormalizable Higgs potential
spanning over 3× 45⊕ 16⊕ 16. The presence of the cubic 451 ⊗ 452 ⊗ 453 invariant allows for a disalignment between
the VEVs of the adjoints and the spinor multiplets that leaves a preserved SM algebra. Let us remind that allowing
for Higgs representations larger than the adjoint the minimal requirement for a renormalizable setting is an Higgs
sector with 54⊕ 45⊕ 126⊕ 126 [6].

We are going to show that by considering a non-standard hypercharge embedding in SO(10) ⊗ U(1)X (flipped
SO(10)) the breaking to the SM is achievable at the renormalizable level with 45 ⊕ 2 ×

(
16⊕ 16

)
Higgs fields. Let

us stress that what we require is that the GUT symmetry breaking is driven by the renormalizable part of the
superpotential, while Planck suppressed interactions may be relevant for the fermion mass spectrum, in particular for
the neutrino sector.
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Standard SO(10) Flipped SO(10)⊗ U(1)

Higgs superfields R NR R NR

16⊕ 16 SO(10) SU(5) SO(10)⊗ U(1) SU(5)⊗ U(1)

2×
(
16⊕ 16

)
SO(10) SU(5) SO(10)⊗ U(1) SM

45⊕ 16⊕ 16 SU(5) SM SU(5)⊗ U(1) SM⊗ U(1)

45⊕ 2×
(
16⊕ 16

)
SU(5) SM SM SM

2× 45⊕ 16⊕ 16 SU(5) SM SU(5)⊗ U(1) SM⊗ U(1)

TABLE I. Comparative summary of supersymmetric vacua left invariant by the SM singlet VEVs in various combinations of spinorial and
adjoint Higgs representations of standard SO(10) and flipped SO(10)⊗U(1). The results for a renormalizable (R) and a non-renormalizable
(NR) Higgs superpotential are respectively listed.

Higgs superfields R NR

27⊕ 27 E6 SO(10)

2×
(
27⊕ 27

)
E6 SU(5)

78⊕ 27⊕ 27 SO(10) SM⊗ U(1)

78⊕ 2×
(
27⊕ 27

)
SU(5) SM

2× 78⊕ 2×
(
27⊕ 27

)
SU(5) SM

TABLE II. Same as in Table I for the E6 gauge group with fundamental and adjoint Higgs representations.

III. MINIMAL FLIPPED SO(10) HIGGS MODEL
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eration of a simple E6 embedding), the SM can be reached from standard SO(10) via a renormalizable Higgs potential
spanning over 3× 45⊕ 16⊕ 16. The presence of the cubic 451 ⊗ 452 ⊗ 453 invariant allows for a disalignment between
the VEVs of the adjoints and the spinor multiplets that leaves a preserved SM algebra. Let us remind that allowing
for Higgs representations larger than the adjoint the minimal requirement for a renormalizable setting is an Higgs
sector with 54⊕ 45⊕ 126⊕ 126 [6].

We are going to show that by considering a non-standard hypercharge embedding in SO(10) ⊗ U(1)X (flipped
SO(10)) the breaking to the SM is achievable at the renormalizable level with 45 ⊕ 2 ×
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16⊕ 16

)
Higgs fields. Let

us stress that what we require is that the GUT symmetry breaking is driven by the renormalizable part of the
superpotential, while Planck suppressed interactions may be relevant for the fermion mass spectrum, in particular for
the neutrino sector.
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