New Physics with the ATLAS detector: experimental prospects

G. Siragusa on behalf of the ATLAS collaboration

Discrete 2010 – Rome (Italy)

Discuss results and preparations for early searches for New Physics with the *ATLAS* Experiment

- Di-jet searches
 - high mass final states
 - angular distribution
- High mass Lepton + MET final states
- Universal Extra Dimensions: Di-photon + MET
- SUSY searches
- Conclusion

The ATLAS detector at the LHC

Machine parameters (in 2010)

- Center of Mass Energy
 - 7 TeV (*pp* collisions)
- Luminosity
 - L_{peak}=2.1 x 10³² cm⁻²s⁻¹
 - up to 4 pile-up events
 - L_{int}~45 pb-1
- Three level trigger
- High resolution vertexing and tracking
- Finely segmented and hermetic calorimeters
- Muon Spectrometer in air core toroidal field

- General purpose detector
 - Optimised for a wide range of physics signatures
 - High p_{τ} leptons, jets, MET

Di-jet searches: high mass di-jet final states Phys. Rev. Lett. 105, 161801 (2010)

- Several theoretical models predict new heavy particles that decay into two energetic partons
 - Benchmark signal: excited quark (q*)
- Invariant mass (very sensitive to new physics)

$$m^{jj} = \sqrt{(E^{j_1} + E^{j_2})^2 - (\vec{p}^{j_1} + \vec{p}^{j_2})^2}$$

- Di-jet reconstruction and event selection
 - Anti-kT (R=0.6)
 - p_T^{jet1}>150; p_T^{jet2}>30; GeV;
 - |η|<2.5; |Δη| < 1.3

Roma, 10/12/2010

$$\int_{a}^{b} \int_{a}^{b} \int_{a$$

High mass di-jet final states: exclusion limit

Phys. Rev. Lett. 105, 161801 (2010)

- Exclusion limit
 - Cross section x Acceptance
 - Bayesian analysis in the hypothesis that zero signal events are observed
- Systematic uncertainties
 - Jet energy scale (6-9%)
 - Jet energy resolution (14%)
 - Integrated luminosity (11%)

Excluded at 95% CL

0.5 TeV < m_{q*} < 1.53 TeV

Roma, 10/12/2010

Di-jet searches: angular distribution

- Goal: look for evidence of New Physics in non-resonant production of di-jets (with rapidities $y_{1,2}$ resp. at pseudo-rapidities $\eta_{1,2}$)
 - Benchmark qq contact interactions
- Observables (use together to constraint a signal):

$$X = \exp(|y_1 - y_2|)$$

$$R_C = \frac{N(|\eta_{1,2}| < 0.7)}{N(0.7 < |\eta_{1,2}| < 1.3)}$$

Lorentz invariant related to the CM scattering angle (θ^*)

Jet reconstruction algorithm used

```
Anti-kT with R=0.6
```

- Both observables are predicted to produce approximately flat distributions for QCD processes
 - Signal: deviation from flatness for di-jet masses above a certain threshold

Roma, 10/12/2010

Di-jet searches: angular distribution (2) arXiv:1009.5069v1 [hep-ex]

Event Selection:

Angular distributions mostly independent from jet energy calibration and luminosity. Observed deviation from predicted background not statistically significant. Roma, 10/12/2010 G. Siragusa – Discrete 2010 7

Di-jets angular distribution: *limit*

{⊥⊥}≈0.16 Use the highest mass bin *L*dt = 3.1 pb⁻¹,√s=7 TeV m{...}>1200 GeV m ">1.2 TeV 0.14 95% C.L. on F , Measured F , • $F_{\chi} = N_{\chi < 3.3} / N_{tot}$ 0.12 QCD Prediction Expected Limit Variation (68% 0.1 • $N_{\gamma < 3.3}$ = number of events with $\chi < 3.3$ 0.08 • $N_{tot} = total number of events$ 0.06 ATLAS **Previous limit from Tevatron** 0.04^L₂ 2.5 3 3.5 $\Lambda > 2.8$ TeV Λ [TeV] [PRL 103:191803,2009]

Contact Interactions below $\Lambda = 3.4$ TeV excluded at 95% CL

Search for final states with *lepton and Missing* E_{T}

- Heavy, charged gauge boson decaying into *Iv*
 - Benchmark: SSM W'
 - High-pT lepton + MET, $p_T \sim m(W')/2$, MET $\sim m(W')/2$
- Search for evidence of resonances in the $m_{\!\scriptscriptstyle \rm T}$ spectrum

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

- Set a limit on cross section times BR, as a function of m(W')
- Current limit: m_{w'}>1.0TeV at 95% CL
 - D0 Collaboration, Phys. Rev. Lett. **100** (2008) 031804
- Background dominated by W/Z, ttbar, QCD di-jets
 - QCD dominated by events with one fake electron and fake MET (from the mis-measurement of a jet)

Roma, 10/12/2010

Electron and MissingE_T for high massive bosons

- Use the W peak for detailed comparison with SM prediction
- Detailed study of the electrons with high $p_{\!_{\rm T}}$
 - Very good calorimeter resolution, high Trigger efficiency
 - electron identification cuts optimized for the high p_{τ} regime
- MissingET in good agreement with data
 - Improvements expected from recoil studies on W and Z bosons

$W' \rightarrow ev$: final selection

ATLAS-CONF-2010-089

- Reject most of the QCD di-jet background requiring
 - MET > 25 GeV (dominated by fakes)
 - One isolated electron

- The Transverse mass is a very powerful observable
 - Cut at 0.7*m(W')
 - With full 2010 statistics we expect to explore a large range in $m_{_{\rm T}}$ (up to $\sim 500~{\rm GeV})$

Roma, 10/12/2010

W': exclusion limit

ATLAS-CONF-2010-089

- Luminosity, electron reconstruction, MET, theoretical
- Observed limit within the 2-sigma band ●
 - Mass limit (at 95% CL): m(W') > 465 GeV
- Competitive limit expected with the full 2010 statistics Roma, 10/12/2010 G. Siragusa – Discrete 2010

Universal Extra Dimensions: *di-photon* + *MET*

- UED models postulate the existence of additional spatial dimensions in which SM particles can propagate (one is considered here)
 - Kaluza-Klein excitations
 - For the model considered here the largest UED signature is γγ+MET+X
 - Limited SM backgrounds
 - $\gamma\gamma$, γ +jet, QCD di-jets
 - MET due to instrumental effects or resolution
 - W → ev (e misidentified as γ)
 + one real γ or a jet
 misidentified as a γ (W+jet)

Roma, 10/12/2010

- Negligible background
 - W/Z + γγ with the EW boson decaying into a final state with neutrino

Universal Extra Dimensions: *di-photon* + *MET*

- Signal region MET > 75 GeV
 - Keep expected background below 1 event
- Theoretical model
 - AR = 20
 - A is the cut off on the calculation of the radiative corrections to the KK mass spectrum
 - R is the radius of the compactified extra dimension
 - N = 6 (extra dimensions in which only gravity can propagate)
 - $M_D = 5$ TeV (Planck scale)

Roma, 10/12/2010

Event selection. Two photons

- E_T>25 GeV
- $E_{T}^{had}/E_{T}^{c}<0.2$
- $|\eta^{\gamma}| < 1.37 \text{ or } 1.52 < |\eta^{\gamma}| < 1.81$

Di-photon + MET: *Exclusion limit*

- Good agreement between data and expected backgrounds
 - Set a limit on the UED production cross section
 - Previous limit from Tevatron
 - 1/R < 477 GeV (excluded at 95% CL)
- D0 Collaboration, expected for publication in Phys. Rev. Lett. [arXiv:1008.2133]

1/R < 728 GeV excluded at 95% CL

SUSY searches

- Inclusive searches
 - Model independent
 - Benchmark model: mSugra (SU4)
 - Understand backgrounds
 - Multi jet final states at a new energy
- SUSY final states
 - MET from undetected LSP
 - hadronic jets, (b-jets)
 - Charged leptons
- Essentially background studies and physics performance so far

g

 $\tilde{q}_{\scriptscriptstyle L}$

q

 $ilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle 2}$

- Check control regions
 - compare with background MC

SUSY signatures: MET + 4 jets + 0 leptons

ATLAS-CONF-2010-065 ATL-PHYS-PUB-2010-010

- Best discovery potential (up to ~500 nb⁻¹)
 - Could discover up to $m_{_{squark}} \sim 700 \text{ GeV}, m_{_{qluino}} \sim 600 \text{ GeV}$
 - Improve reach of Tevatron (m_{gluino} >390 GeV excluded at

Roma, 10/12/2010

SUSY signatures: MET + jets + 1 lepton

ATLAS-CONF-2010-066

- Event selection
 - One lepton (e or μ) with p_{τ} > 20 GeV
 - ≥ 2 jets with $p_{\tau} > 30$ GeV
 - MET > 30 GeV
- Background dominated by production of EW boson + jets
 - Expectation normalized in side-band regions

SUSY signatures: *MET* + *b*-*jets*

- SUSY signals typically rich in b quarks
 - b-tagging algorithm: reconstructed secondary vertices
 - decay length significance: $L/\sigma > 6$
 - Efficiency ~O(50%)
 - Cut on MET significance: $MET/\sqrt{\Sigma E_{T}} > 2 \sqrt{GeV}$

Conclusion and Outlook

- ATLAS is exploring uncharted territory at the TeV scale
 - In 2010 more than 40/pb of pp collisions have been collected at a CM energy of 7 TeV
 - Detector working nicely, performance under control, things progressing very quickly
- Extended limits for New Physics beyond previous experiments
- Important benchmark searches like W',Z'
- SUSY searches are under way
- Sensitivity to New Physics supported by a very good understanding of backgrounds

Many thanks for your attention!

Spares

Roma, 10/12/2010

Di-jet final states: event topology

QCD 875 <mjj< 1020 GeV

ATLAS Preliminary

ATLAS Preliminary

QCD di-jets are forward (large $\Delta \eta$)

Signal is central

Roma, 10/12/2010

High mass di-jet final states: event selection and background fit

- Jet reconstructed with Anti-Kt algorithm (R=0.6)
 - $p_{_{T}}^{_{j1}} > 150 \text{ GeV}, p_{_{T}}^{_{j2}} > 30 \text{ GeV}$
 - Veto events with a third jet with p_{T} > 15 GeV
 - $|\eta^{jet}| < 2.5 \leftarrow \text{Reject the QCD background}$
 - |∆η| < 1.3 ←
 - excluded region 1.3 < $|\eta|$ < 1.8
 - m^{jj} > 350 GeV ← Prevent kinematic biases
- Background fitted with:

$$f(x) = p_0 \frac{(1-x)^{p_1}}{x^{p_2+p_3\ln(x)}}; x = m^{jj} / \sqrt{s}$$

Also used in Phys. Rev. D 79 (2009) 112002.

 Statistical tests indicate agreement between data and a smooth monotonically decreasing function

Roma, 10/12/2010

Initial selection	
Data quality: detector, beam spot, luminosity monitors	
Trigger	
Primary vertex with three good tracks and $ z < 150 \text{ mm}$	
Jet cleaning	
1 medium electron with $p_{\rm T} > 20$ GeV	1 combined muon with $p_{\rm T} > 20$ GeV
electron $ \eta < 1.37$ or $1.52 < \eta < 2.47$	muon $ \eta < 2.0$
electron in fiducial region	
	$0.5 < p^{\rm MS}/p^{\rm ID} < 2$
	$N_{\text{hit}}^{\text{pixel}} > 0, N_{\text{hit}}^{\text{strip}} > 3, (N_{\text{hit}}^{\text{pixel}} + N_{\text{hit}}^{\text{strip}}) > 5$
lepton close to primary vertex: $ r_0^{PV} < 1 \text{ mm}, z_0^{PV} < 5 \text{ mm}$	
Exactly one candidate electron	Exactly one candidate muon
Final selection	
Isolation: $R_{isol} < 0.05$	
$E_{\rm T}^{\rm miss} > 25 { m GeV}$	
Transverse mass bin	
$m_{\rm T} > 0.7 m_{W'}$	

Limits on $\sigma \times BR$ are set for each mass and decay channel (e, μ , e or μ)

- For each mass hypothesis $m_{W'}$, we count the number of events over $0.7m_{W'}$ (optimized for significance)
- This number is used to obtain the limit using $CL_s = CL_{s+b}/CL_b$ ("Modified Frequentist Confidence Level") T. Junk, NIM A434 (1999) 435.
- Likelihood ratios built from the Poisson probability for the number of events
 - signal and background uncertainties are integrated over (assuming Gaussian PDF's).

W': systematic uncertainties

Systematic uncertainties

- Luminosity: 11%
- W boson tail cross section: 7% (Mass dependence, scale variation, PDF uncertainties, uncertainty on the W boson width)
- On QCD cross section: 40%
- Electron identification: 6% efficiency reduction
- Uncertainty from material effects, fiducial cuts, scale and other sources: 8%
- Degradation at high pT: from 0.3% to 1.7%
- Low energy component of MET: 0.6%

W': discovery potential

 Expected sensitivity to heavy bosons decaying into I+v

Roma, 10/12/2010

Di-lepton resonances: Z'

- $Z' \rightarrow 2I$ is a simple clean signature
 - Two oppositely charged, same flavour leptons
 - Needed $\sim 100 \text{pb}^{-1}$ for first sensitive studies

Roma, 10/12/2010

SUSY benchmark point

- MSUGRA (SU4)
 - Low mass point close to Tevatron bounds
 - -m0 = 200 GeV
 - m1/2 = 160 GeV
 - -A0 = -400 GeV
 - $-\tan(\beta) = 10$
 - μ > 0

SUSY signatures: Event selection

- Cuts loosened to allow studies with low luminosity
 - Two or jets with p_T>70 (30)
 GeV
 - MET > 40 GeV
 - ∆\(\$\phi\$ (jet, MET) > 0.2
 - MET > 0.3* M_{eff}
- Found good agreement between data/MC

Jet Performance

- Data and theory consistent in all rapidity regions over wide jet $p_{\!_{\rm T}}$ and di-jet mass range

Roma, 10/12/2010

Exclusion limit: Likelihood ratio

$$L_{v}(d|b_{v},s) \equiv \frac{\prod_{i} e^{-[b_{i}(v)+s_{i}(v)]} [b_{i}(v)+s_{i}(v)]^{d_{i}}}{d_{i}!}$$

- "v" observable
- "i" combination (e.g. muon and electron channel)
- d = observed, b = background, s = signal (events)
- Systematic uncertainties treated as nuisance parameters (parametrized by a Gaussian)

$$L_{\nu,\theta_{1,\theta_{2,\dots}},\theta_{N}} = L_{\nu} \prod_{i} g_{i}(\theta_{i})$$