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The Flavour Puzzle
The sources of the Flavour Puzzle are the Yukawa interactions:
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Theoretically the      are completely undetermined, but experimentally...Yi
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Theoretically the      are completely undetermined, but experimentally...Yi

Charged 
Fermions

mu : mc : mt ≈ λ8 : λ4 : 1

md : ms : mb ≈ λ4 : λ2 : 1

me : mµ : mτ ≈ λ4÷5 : λ2 : 1

λ ≈ θC ≈ 0.23
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Theoretically the      are completely undetermined, but experimentally...Yi

Charged 
Fermions

Neutrinos

mν � O(eV)

Solar and Atmospheric anomalies explained by neutrino oscillations:
Normal Inverse

mu : mc : mt ≈ λ8 : λ4 : 1

md : ms : mb ≈ λ4 : λ2 : 1

me : mµ : mτ ≈ λ4÷5 : λ2 : 1

λ ≈ θC ≈ 0.23
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∆m2
sol ≡ m2

2 −m2
1 ∼ 7× 10−5 eV2
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The Mixing Matrices
CKM Matrix

V = R23(θ23) ·R13(θ13, δ) ·R12(θ12)

Luca Merlo, Bimaximal Neutrino Mixing with Discrete Flavour Symmetries 4



The Mixing Matrices
CKM Matrix

V = R23(θ23) ·R13(θ13, δ) ·R12(θ12)

|V | =




0.97 0.23 0.0039
0.23 1 0.041
0.0081 0.038 1?
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sin θ12 � 0.22
sin θ23 � 0.04
sin θ13 � 0.01

δ � 77◦



The Mixing Matrices
CKM Matrix

V =




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1





V = R23(θ23) ·R13(θ13, δ) ·R12(θ12)

Wolfenstein 
parametrization

λ ≈ θC ≈ 0.23

|V | =




0.97 0.23 0.0039
0.23 1 0.041
0.0081 0.038 1?
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The Mixing Matrices
CKM Matrix
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V = R23(θ23) ·R13(θ13, δ) ·R12(θ12)

sin θ12 � 0.22
sin θ23 � 0.04
sin θ13 � 0.01

δ � 77◦



The Mixing Matrices

θ12 ≈ 34◦

θ23 ≈ 43◦

PMNS Matrix
Atmospheric Solar Reactor Dirac 

Majorana 
U = R23(θ23) ·R13(θ13, δ) ·R12(θ12) · P

CKM Matrix

θ13 ≈ 8◦
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tan2 θ12 = 0.444+0.039
−0.027 (0.561− 0.363)

sin2 θ23 = 0.466+0.073
−0.058 (0.331− 0.644)

sin2 θ13 = 0.009+0.013
−0.007 (≤ 0.046)
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V = R23(θ23) ·R13(θ13, δ) ·R12(θ12)

sin θ12 � 0.22
sin θ23 � 0.04
sin θ13 � 0.01

δ � 77◦



[Harrison, Perkins & Scott; Zhi-Zhong Xing 2002]

The Tri-Bimaximal Pattern
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tan2 θTB
12 = 1/2

sin2 θTB
23 = 1/2

sin θTB
13 = 0

[Harrison, Perkins & Scott; Zhi-Zhong Xing 2002]
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The Tri-Bimaximal Pattern
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tan2 θ12 = 0.444+0.039
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sin2 θ13 = 0.009+0.013
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tan2 θTB
12 = 1/2

sin2 θTB
23 = 1/2

sin θTB
13 = 0

Mixing angles independent from mass eigenvalues  vs. quark mixings 

[Harrison, Perkins & Scott; Zhi-Zhong Xing 2002]

The Tri-Bimaximal Pattern
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θ12 = 35.26◦sin2 θ23 =
1

2
sin2 θ13 = 0 tan2 θ12 =

1

2

Neutrino Mass Patterns

TRI-BIMAXIMAL (TB)
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sin2 θ23 =
1

2
sin2 θ13 = 0 tan θ12 =

1

φ

φ ≡ 1 +
√
5

2

θ12 = 31.72◦

θ12 = 35.26◦sin2 θ23 =
1

2
sin2 θ13 = 0 tan2 θ12 =

1

2

Neutrino Mass Patterns

TRI-BIMAXIMAL (TB)

GOLDEN RATIO (GR) [Kajiyama, Raidal & Strumia 2007]
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sin2 θ23 =
1

2
sin2 θ13 = 0 tan θ12 =

1

φ

φ ≡ 1 +
√
5

2

θ12 = 31.72◦

θ12 = 35.26◦sin2 θ23 =
1

2
sin2 θ13 = 0 tan2 θ12 =

1

2

Neutrino Mass Patterns

TRI-BIMAXIMAL (TB)

GOLDEN RATIO (GR)

θ13 ≈ O(θ2C)

The agreement of       suggests that only tiny corrections                are allowedθ12

�
O(θ2C)

�

is expected

[Kajiyama, Raidal & Strumia 2007]
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TB Mixing Accidental?
θ13 θ13 ≈ θCIf         is found close to its present upper bound                  , this would imply that 

TB mixing is accidental.
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TB Mixing Accidental?
θ13 θ13 ≈ θCIf         is found close to its present upper bound                  , this would imply that 

TB mixing is accidental.

Need of an alternative leading principle

π/4 ≈ θ12 + θC

Quark-Lepton Complementarity: [Smirnov; Raidal; Minakata & Smirnov 2004]
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θ12 ≈ π/4− θC

TB Mixing Accidental?
θ13 θ13 ≈ θCIf         is found close to its present upper bound                  , this would imply that 

TB mixing is accidental.

Need of an alternative leading principle

π/4 ≈ θ12 + θC

Quark-Lepton Complementarity: [Smirnov; Raidal; Minakata & Smirnov 2004]

θCThis relation suggests a maximal solar angle in first approximation, corrected by 

No compelling models with this feature!!!
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θ12 = 45◦sin2 θ23 =
1

2
sin2 θ13 = 0 tan2 θ12 = 1

Neutrino Mass Patterns (2)

BIMAXIMAL (BM) [Vissani 1997; Barger et al. 1998]
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θ12 = 45◦sin2 θ23 =
1

2
sin2 θ13 = 0 tan2 θ12 = 1

Neutrino Mass Patterns (2)

BIMAXIMAL (BM)

Requires a large correction of               to agree with the data:O(θC)

is expectedθ13 ≈ O(θC)

[Vissani 1997; Barger et al. 1998]
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θ12 ≈ π/4− θC
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sin2 θBM
12 = 1/2

sin2 θBM
23 = 1/2

sin θBM
13 = 0

The Bimaximal Pattern
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[Barger,Pakvasa,Weiler and Whisnant 1998]
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UBM =




1/
√
2 −1/

√
2 0

1/2 1/2 −1/
√
2

1/2 1/2 +1/
√
2




sin2 θBM

12 = 1/2

sin2 θBM
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13 = 0

Mixings independent from mass eigenvalues

The Bimaximal Pattern
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[Barger,Pakvasa,Weiler and Whisnant 1998]
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UBM =
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sin2 θBM

12 = 1/2

sin2 θBM
23 = 1/2

sin θBM
13 = 0

sin2 θ12 � 1/2 + δ12

sin2 θ23 � 1/2 + δ23

sin θ13 � δ13 δ13 ≤ θC

δ23 � θC

δ12 ≈ θC

Mixings independent from mass eigenvalues

The Bimaximal Pattern
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[Barger,Pakvasa,Weiler and Whisnant 1998]

Corrections needed to fit the data:

with
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sin2 θ12 � 1/2 + δ12
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UPMNS = U †
�Uν = UBM

Mixings independent from mass eigenvalues

The Bimaximal Pattern
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[Barger,Pakvasa,Weiler and Whisnant 1998]

Corrections needed to fit the data:

with

Strategy:
at LO                        and

at NLO

Uν = UBM U� = 1

UPMNS = UBM + δU

10



11

Model Building
sin2 θ12 � 1/2 + δ12

sin2 θ23 � 1/2 + δ23

sin θ13 � δ13 δ13 ≤ θC

δ23 � θC

δ12 ≈ θC

with
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U� =




1 δ12 δ13

−δ12 1 δ23
−δ13 −δ23 1



 ≈




1 θC θC

−θC 1 θ2C
−θC −θ2C 1





UPMNS = U †
�Uν

Uν = UBM
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Model Building

many possibilities: our choice

sin2 θ12 � 1/2 + δ12

sin2 θ23 � 1/2 + δ23

sin θ13 � δ13 δ13 ≤ θC

δ23 � θC

δ12 ≈ θC

with
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Lepton Model
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[Altarelli, Feruglio & LM 2009]

We consider the flavour group S4, the group of permutation of 4 objects. 
It has 24 elements and 5 irreducible representations: 1, 1’, 1’’, 2, 3, 3’.
The symmetry must be broken at low energy and then:
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We consider the flavour group S4, the group of permutation of 4 objects. 
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MBM
νMdiag

�

S4 × Z4 × U(1)FN

Z4 Z2



UPMNS = U †
�Uν = UBM
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[Altarelli, Feruglio & LM 2009]

We consider the flavour group S4, the group of permutation of 4 objects. 
It has 24 elements and 5 irreducible representations: 1, 1’, 1’’, 2, 3, 3’.
The symmetry must be broken at low energy and then:

�ϕ��
�ϕν�

MBM
νMdiag

�

S4 × Z4 × U(1)FN

Z4 Z2

The full symmetry is broken by a set of fields, the flavons, which are 
scalar under the SM group, but charged under S4 . These fields live at 
very high energies (masses and VEVs are close to the GUT scale). They 
break the symmetry into different subgroups, thanks to misaligned VEVs.  



UPMNS = U †
�Uν = UBM
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[Altarelli, Feruglio & LM 2009]

We consider the flavour group S4, the group of permutation of 4 objects. 
It has 24 elements and 5 irreducible representations: 1, 1’, 1’’, 2, 3, 3’.
The symmetry must be broken at low energy and then:

�ϕ��
�ϕν�

MBM
νMdiag

�

S4 × Z4 × U(1)FN

Z4 Z2

The full symmetry is broken by a set of fields, the flavons, which are 
scalar under the SM group, but charged under S4 . These fields live at 
very high energies (masses and VEVs are close to the GUT scale). They 
break the symmetry into different subgroups, thanks to misaligned VEVs.  

me � mµ � mτ

keeps separated the two sectors

explains the hierarchy



� ec µc τ c νc hu,d θ ϕ� χ� ξν ϕν

S4 3 1 1� 1 3 1 1 3 3� 1 3

Z4 1 −1 −i −i 1 1 1 i i 1 1

U(1)FN 0 2 1 0 0 0 -1 0 0 0 0

Matter fields Higgses Flavons
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w� = yτ
1

Λ
τ c (ϕ��)hd + yµ

θ

Λ2
µc (ϕ��)

� hd + ye
θ2

Λ4
ec (ϕ�ϕ��)hd

wν = y(νc�)hu +MΛ(νcνc) + xa(ν
cνcξν) + xb(ν

cνcϕν)

� ec µc τ c νc hu,d θ ϕ� χ� ξν ϕν

S4 3 1 1� 1 3 1 1 3 3� 1 3

Z4 1 −1 −i −i 1 1 1 i i 1 1

U(1)FN 0 2 1 0 0 0 -1 0 0 0 0

Matter fields Higgses Flavons

φ/Λ
Expansion 
in
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w� = yτ
1

Λ
τ c (ϕ��)hd + yµ

θ

Λ2
µc (ϕ��)

� hd + ye
θ2

Λ4
ec (ϕ�ϕ��)hd

�ϕ��
Λ

=




0
v
0



 �χ��
Λ

=




0
0
v



 �ϕν�
Λ

=




0
v�

−v�



 �ξν�
Λ

= v�
�θ�
Λ

= t

M� = diag(yev
2t2, yνvt, yτv)vd

t ∼ 0.06

v ∼ 0.08

wν = y(νc�)hu +MΛ(νcνc) + xa(ν
cνcξν) + xb(ν

cνcϕν)

� ec µc τ c νc hu,d θ ϕ� χ� ξν ϕν

S4 3 1 1� 1 3 1 1 3 3� 1 3

Z4 1 −1 −i −i 1 1 1 i i 1 1

U(1)FN 0 2 1 0 0 0 -1 0 0 0 0

Matter fields Higgses Flavons

vacuum alignment:

φ/Λ
Expansion 
in
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Mν = −(mD
ν )TM−1

N mD
ν diagonalized by BM 



m� =




me 0 0
0 mµ 0
0 0 mτ



 m� =




me mev� mev�

mev� mµ 0
mev� 0 mτ
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at NLO: charged leptons

NLO



m� =




me 0 0
0 mµ 0
0 0 mτ



 m� =




me mev� mev�

mev� mµ 0
mev� 0 mτ





U� =




1 0 0
0 1 0
0 0 1



 U� =




1 O(v�) O(v�)

O(v�) 1 0
O(v�) 0 1
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at NLO: charged leptons

NLO

NLO

at NLO: neutrinos
the corrections preserve the symmetry and then all the NLO terms 
can be absorbed into the LO ones. The neutrino mass matrix is still 
diagonalized by the BM mixing



m� =




me 0 0
0 mµ 0
0 0 mτ



 m� =




me mev� mev�

mev� mµ 0
mev� 0 mτ





U� =




1 0 0
0 1 0
0 0 1



 U� =




1 O(v�) O(v�)

O(v�) 1 0
O(v�) 0 1





v� ≈ O(θC)

sin2 θ12 � 1/2 +O(v�)

sin2 θ23 = 1/2

sin θ13 � O(v�)

14Luca Merlo, Bimaximal Neutrino Mixing with Discrete Flavour Symmetries 

at NLO: charged leptons

NLO

NLO

at NLO: neutrinos
the corrections preserve the symmetry and then all the NLO terms 
can be absorbed into the LO ones. The neutrino mass matrix is still 
diagonalized by the BM mixing

sin2 θBM
12 = 1/2

sin2 θBM
23 = 1/2

sin θBM
13 = 0

NLO



m� =




me 0 0
0 mµ 0
0 0 mτ



 m� =




me mev� mev�

mev� mµ 0
mev� 0 mτ





U� =




1 0 0
0 1 0
0 0 1



 U� =




1 O(v�) O(v�)

O(v�) 1 0
O(v�) 0 1





v� ≈ O(θC)

O(v�2) sin2 θ23 � 1/2 +O(v�2)

sin2 θ12 � 1/2 +O(v�)

sin2 θ23 = 1/2

sin θ13 � O(v�)
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at NLO: charged leptons

NLO

NLO

at NLO: neutrinos
the corrections preserve the symmetry and then all the NLO terms 
can be absorbed into the LO ones. The neutrino mass matrix is still 
diagonalized by the BM mixing

sin2 θBM
12 = 1/2

sin2 θBM
23 = 1/2

sin θBM
13 = 0

NLO

at NNLO: general corrections of 



sin2 θ12 � 1/2 +O(v�)

sin2 θ23 = 1/2

sin θ13 � O(v�)
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0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
1�10�4

5�10�4
0.001

0.005
0.010

0.050
0.100

Sin2Θ12

Si
n2
Θ 1
3

upper bound � 3Σ

3Σ
error

3Σ
error

taking the parameters 
as random numbers in 
[0,2] and v� = 0.15
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Normal ordering with moderate hierarchy or quasi degenerate spectrum

A lower bound of abour 0.1 meV on        and on           is suggestedm1 |mee|



QL ∼ 3 UR ∼ 1, 1� DR ∼ 1, 1�

17

Extension to Quarks
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Using the same setting as for leptons:



QL ∼ 3 UR ∼ 1, 1� DR ∼ 1, 1�

mu,d =




mu,d 0 0
0 mc,s 0
0 0 mt,b



 mu,d =




mu,d mu,d θC mu,d θC

mc,s θC mc,s 0
mt,b θC 0 mt,b
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choice with respect to [23] and in the next section we will show that it is easily realized in
our context.

In the approximation of small λ, the lepton mixing matrix can schematically be written
as

U = R23

�
−π

4

�
R13(λ)R12

�π
4
− λ

�
=

�
R23

�
−π

4

�
R13(λ)R12(−λ)

� �� �
U†
e

�
R12

�π
4

�

� �� �
Uν

, (5)

where Rij(θ) stands for a rotation in the (ij) plane of an angle θ. 2 As a result, after a
suitable commutation of matrices, Ue can naively be written as

Ue = R23

�π
4

�
R13(λ)R12(λ) . (6)

The CKM matrix is given in first approximation as

V = R12(λ). (7)

Because of eq. (4), Vd has the same structure as Ue in eq. (6) and therefore we can obtain
the CKM matrix as

V =
�
R12 (−αλ)R13(−λ)R23

�
−π

4

�

� �� �
V †
u

�
R23

�π
4

�
R13(λ)R12(λ))

� �� �
Vd

. (8)

We see that the angles of the (23) and (13) rotations in V †
u should be the opposite of

those in Vd, while the angles in the (12) sector should be different. We have schematically
indicated this via the α coefficient. Analogous to eq. (6), we write Vu as

Vu = R23

�π
4

�
R13(λ)R12(αλ) . (9)

Moving to the explicit form of the mass matrices, the generic effective Majorana neu-
trino mass matrix mν which is diagonalized by Uν as in eq. (5), Uν = R12

�
π
4

�
, through

mdiag
ν = UT

ν mν Uν , is given by

mν ∼




a b 0
b a 0
0 0 c



 . (10)

In the charged lepton sector, we are looking for the most general form of the mass
matrix, whose square Me M †

e is diagonalized by the action of Ue of eq. (6),
�
Me M

†
e

�diag
= U †

e Me M
†
e Ue . (11)

Inverting eq. (11) we find in the limit me → 0

Me M
†
e ∼ m2

τ

2




0 λ λ
λ 1 1
λ 1 1



+
m2

µ

2




0 λ −λ
λ 1 −1
−λ −1 1



+ . . . , (12)

2A coefficient of order one is in general present to multiply each angle, but we do not show them here
in order to simply the discussion. We will consider the precise expressions in the following sections.

5

The PMNS matrix can be defined as:

One of the few 
possibilities 
for         in S4 mν
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Extension to the quark sector in the context of the Pati-Salam GUT
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