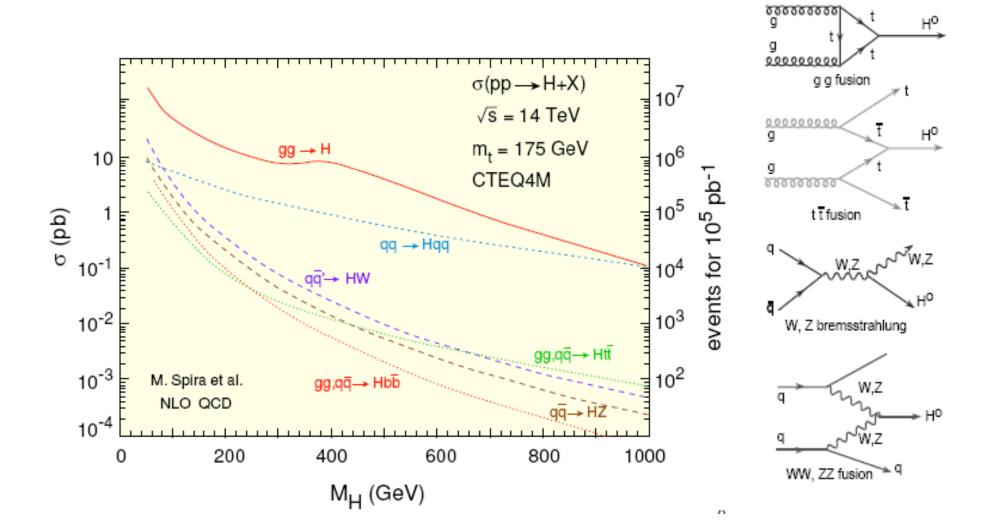
CP-VIOLATING HIGGS SECTOR OF MSSM

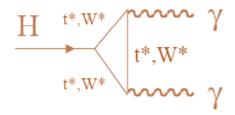
P Poulose IIT Guwahati, India

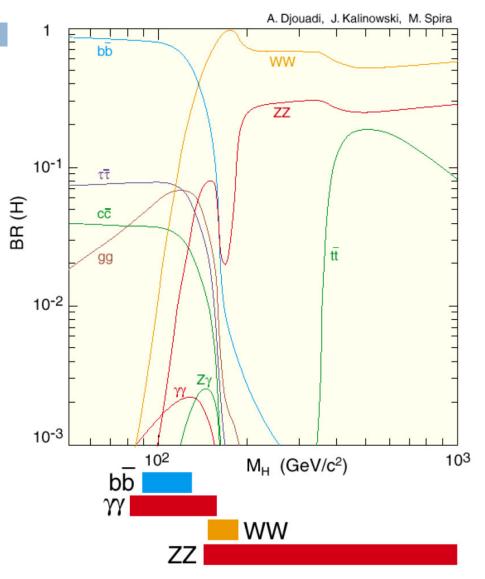
In collaboration with


- S Hesselbach, IPPP, Durham
- S Moretti, University of Southampton
- S Munir, University of Mexico

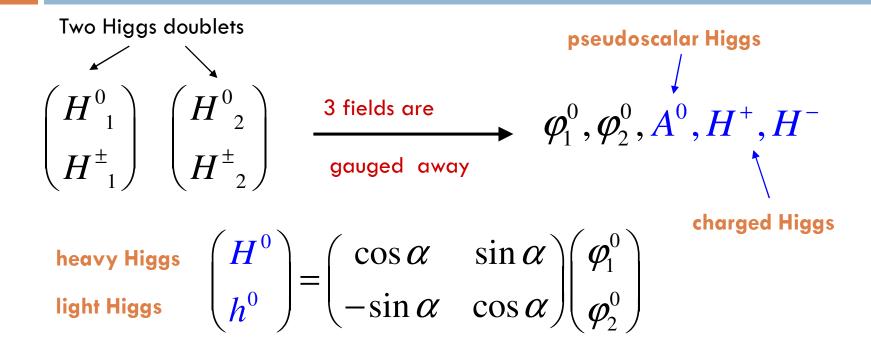
DISCRETE 2010

Rome, 06 December 2010


SM picture: Production at LHC


SM picture: decays

For $m_H \approx 100 - 130 \, GeV$


 $H \longrightarrow \gamma \gamma$ is the discovery channel

If exists, LHC will find it for the entire mass range

CP-conserving MSSM

Two independent parameters:

 $tan\beta$ – ratio of vev's of the two doublets M_A – mass of pseudoscalar Higgs A

An MSSM Higgs will not Escape detection at LHC

MSSM with CP violation

Complex parameters in Higgs-squark sector

with
$$\longrightarrow M_{\tilde{t}_{RL}}^2 = (M_{\tilde{t}_{LR}}^2)^* = m_t \left(|A_t| e^{i\varphi_{A_t}} - \frac{|\mu| e^{-i\varphi_{\mu}}}{\tan\beta} \right)$$
 for stops \tilde{t}

$$\longrightarrow M_{\tilde{b}_{RL}}^2 = (M_{\tilde{b}_{LR}}^2)^* = m_b \left(|A_b| e^{i\varphi_{A_b}} - |\mu| e^{-i\varphi_{\mu}} \tan\beta \right)$$
 for sbottoms \tilde{b}

$$A_q : \text{trilinear couplings of squarks} \qquad (\tan\beta = \frac{v_2}{v_1} : \text{ratio of Higgs vevs})$$

$$\mu : \text{Higgs-higgsino mass parameter}$$

● Diagonalization:
$$\begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix} = \mathcal{R}^{\tilde{q}} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix} \rightarrow \text{complex mixing matrix } \mathcal{R}^{\tilde{q}}$$

Higgs sector of CPV MSSM

Higgs mass eigenstates and mixing

- $\mathcal{R}^{\tilde{q}}$ and A_q , μ enter Higgs-squark couplings
- Higher order: squark loops ⇒ explicit CP violation in Higgs sector [Pilaftsis, '98; Pilaftsis, Wagner, '99; Demir, '99, Carena, Ellis, Pilaftsis, Wagner, '00, '01] [Choi, Drees, Lee, '00; Heinemeyer, '01]
 - ightharpoonup all 3 neutral Higgs states mix: $\left(\begin{array}{c} H_1 \\ H_2 \\ H_3 \end{array}\right) = O^T \left(\begin{array}{c} \phi_1 \\ \phi_2 \\ A \end{array}\right)$
 - \rightarrow 3 \times 3 Higgs mixing matrix O
 - \rightarrow 3 mass eigenstates H_1 , H_2 , H_3 (with $m_{H_1} < m_{H_2} < m_{H_3}$)

Higgs sector of CPV MSSM

Effective neutral Higgs-squark couplings at tree-level

$$\mathcal{L}_{\tilde{q}\tilde{q}H} = -g \, C(\tilde{q}_k^{\dagger} H_i \tilde{q}_j) \, \tilde{q}_k^{\dagger} H_i \tilde{q}_j$$

$$\begin{pmatrix} C(\tilde{q}_k^{\dagger} H_i \tilde{q}_j) \end{pmatrix} = \mathcal{R}^{\tilde{q}} \begin{pmatrix} C(\tilde{q}_L^{\dagger} H_i \tilde{q}_L) & C(\tilde{q}_L^{\dagger} H_i \tilde{q}_R) \\ C(\tilde{q}_R^{\dagger} H_i \tilde{q}_L) & C(\tilde{q}_R^{\dagger} H_i \tilde{q}_R) \end{pmatrix} \mathcal{R}^{\tilde{q}^{\dagger}}$$

$$\rightarrow$$
 phases $\varphi_{A_q}, \varphi_{\mu}$ in $C(\tilde{q}_R^{\dagger} H_i \tilde{q}_L) = [C(\tilde{q}_L^{\dagger} H_i \tilde{q}_R)]^*$

for example for stops:

$$\begin{split} C(\tilde{t}_L^{\dagger} H_i \tilde{t}_R) &= \frac{m_t}{2m_W \sin \beta} \{ -i \left(\cos \beta |A_t| e^{-i\varphi_{A_t}} + \sin \beta |\mu| e^{i\varphi_{\mu}} \right) O_{3i} \\ &- \left(|\mu| e^{i\varphi_{\mu}} O_{1i} - |A_t| e^{-i\varphi_{A_t}} O_{2i} \right) \} \end{split}$$

MSSM with CP violation

- Large number of complex couplings make phenomenological studies difficult.
- Invoke symmetries to round off some of the phases.
- Assume some unification (all the tri-linear couplings have same phase.)
- EDM constraints: first two generation couplings are real.
- \square Finally we deal with two phases of μ and A.

CPV in production and decay

- **●** Resonant CP violation at LHC in $b\overline{b}, gg, W^+W^- \to H_i \to \tau^+\tau^-$
 - Scenarios with $m_{H_1} \sim m_{H_2} \sim m_{H_3}$

[Ellis, Lee, Pilaftsis, '04, '05]

- \longrightarrow CP effects largest for $W^+W^- \to H_i \to \tau^+\tau^-$
 - $\rightarrow \sigma$: factor 2
 - \rightarrow CP asymmetry using τ polarization: 50% possible

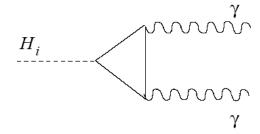
[Gosh, Moretti, '04]

CPX scenario with light H_1 , suppressed H_1ZZ coupling

- $\rightarrow H_1 H^{\mp} W^{\pm}$ coupling enhanced (sum rule)
- $\Rightarrow pp \rightarrow H^{\pm}H_1 \rightarrow 4b\ell + \not\!\!E_T$ promising channel
- $m pp
 ightarrow H_i m{ ilde q}_i m{ ilde q}_j$

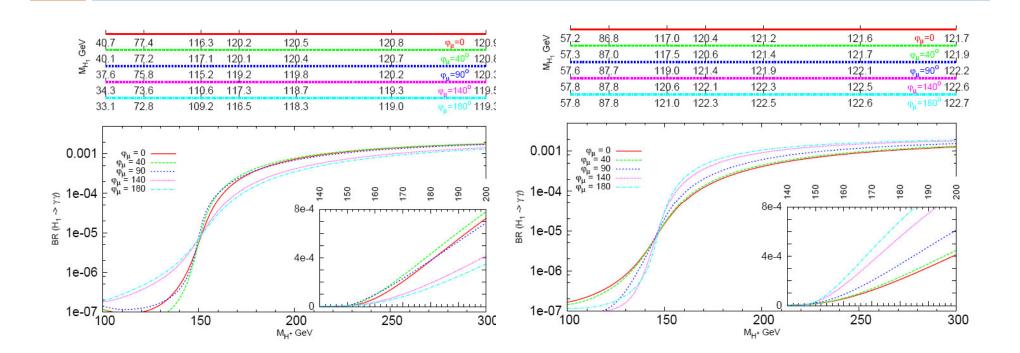
[Li, Li, Li, '06]

 $\rightarrow \sigma(pp \rightarrow H_i \tilde{t}_i \bar{t}_j)$ can be several orders enhanced


Di-photon decay

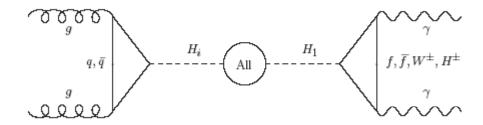
● Impact of ϕ_{μ} on BR($H_1 \rightarrow \gamma \gamma$)

[Moretti, Munir, Poulose, '07]


- m extstyle extstyle
- CPV enters via phase dependence of

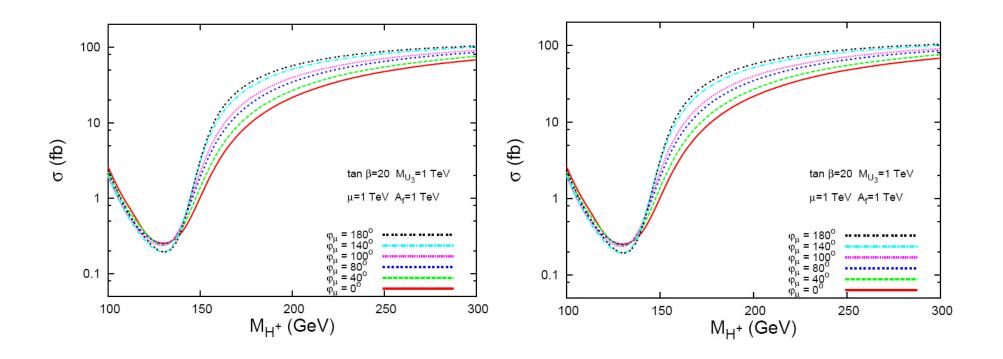
scalar-pseudoscalar mixing H_i couplings (also to SM particles) $\tilde{f}, \, \tilde{\chi}^{\pm}$ sector (masses, couplings to H_i)

- Scan over MSSM parameters
 - \rightarrow 45% deviation between CPV and CPC case possible for same m_{H_1} (assuming 2 GeV mass resolution)


Light Stops in the loop

BR(H $\rightarrow \gamma \gamma$) with and without a light stop.

Tool: CPsuperH

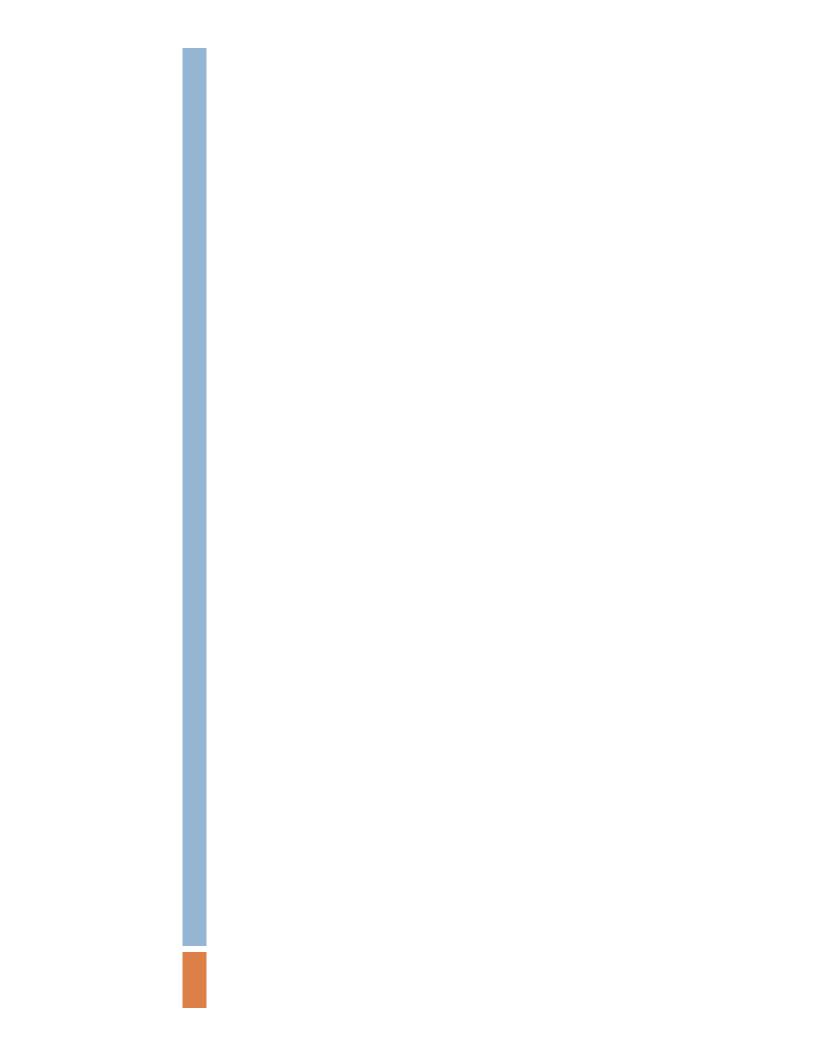

Production through Gluon fusion included

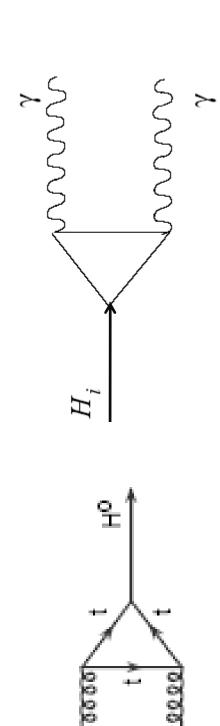
Similar effect is expected in the production through the dominant gluon fusion.

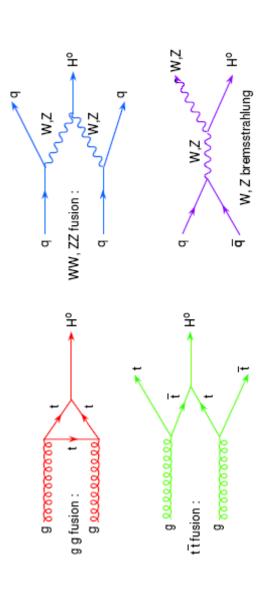
Resonant effects could be expected when the Higgs bosons are degenerate in mass.

Gluon fusion included

σ X BR with and without a light stop. Soft SUSY masses Around 1 TeV.


Conclusions


We considered the effect of CP violation in the Higgs sector of MSSM in the gluon fusion production along with the di-photon decay of the lightest Higgs boson.


Our investigation suggests that at large luminosities the process will betray signatures of CP violation in the sector.

The effect of a light stop emerging through the Higgsstop-stop couplings in the CPV studies of Higgs sector can be studied through this process.

THANK YOU

