The X17 anomaly

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

INFN-Pisa

Zoom seminar July 7, 2021 Pisa, Italy

3 + 4 = +

M. Viviani (INFN-Pisa)

The X17 anomaly

Outline

3

Introduction

- Theoretical study of the A = 4 reactions
- The ${}^{3}\mathrm{H}(p, e^{+}e^{-})^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n, e^{+}e^{-})^{4}\mathrm{He}$ processes
- Incorporating the X17
- Conclusions

Collaborators

- A. Kievsky, & L.E. Marcucci INFN-Pisa & Pisa University, Pisa (Italy)
- L. Girlanda University of Salento & INFN-Lecce, Lecce (Italy)
- E. Filandri PhD student, Trento University, Trento (Italy)
- R. Schiavilla Jefferson Lab. & ODU, Norfolk (VA, USA)

A >

Introduction

Theoretical study of the A = 4 reactions

The ${}^{3}\mathrm{H}(p,e^{+}e^{-})^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n,e^{+}e^{-})^{4}\mathrm{He}$ processes

Incorporating the X17

M. Viviani (INFN-Pisa)

Image: A matching of the second se

The X17 boson "anomaly"

The ATOMKI experiments

- [Krasznahorkay et al., PRL 116, 042501 (2016)]: "Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson"
- [Krasznahorkay et al., arXiv:1910.10459 (23 October 2019)]: "New evidence supporting the existence of the hypothetic X17 particle"
- [Krasznahorkay *et al.*, arXiv:2104.10075 (20 April 2021)]: "A new anomaly observed in ⁴He supports the existence of the hypothetical X17 particle"

Reaction	m _X	Δm_X (stat)	Δm_X (syst)	au	Evidence
	[MeV]	[MeV]	[MeV]	[sec]	
⁷ Li(<i>p</i> , <i>e</i> ⁺ <i>e</i> ⁻) ⁸ Be	16.70	0.35	0.50	10^{-14}	$> 5\sigma$
3 H(<i>p</i> , <i>e</i> ⁺ <i>e</i> ⁻) ⁴ He (2019)	16.84	0.16	0.20		$> 7.2\sigma$
3 H($p, e^{+}e^{-}$) 4 He (2021)	16.94	0.12	0.21		$>$ 8.9 σ

Measurements of the e^+e^- angular correlation in the internal pair conversion (IPC) nuclear transition

image from [Feng et al., 2016]

Previous "anomalies" found in IPC

- [de Boer *et al.*, Phy. Lett. **B388**, 235 (1996); J. Phys. G 27 L29 (2001)]: IKF Frankfurt: 9 MeV Boson?
- [Vitéz et al., Acta Physica Polonica B 39, 483 (2008)]
- [de Boer & Fields, Int. J. mod. Phys. E 20, 1787 (2011)]

The ⁸Be experiment

[Krasznahorkay et al., PRL 116, 042501 (2016)]

Angular distribution of the e^-e^+ pair

[Tanedo,

www.particlebites.com/?p=3970 (Aug. 25, 2016)] "The Delirium over Beryllium" for a nice introduction to the experiment and the possible explanations

 [Zhang & Miller, 2017] "Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?"

Process: $^{7}\text{Li} + p \rightarrow (^{8}\text{Be})^{*}$

- Radiative capture: $({}^{8}Be)^{*} \rightarrow {}^{8}Be + \gamma$
- IPC (standard): $({}^{8}Be)^{*} \rightarrow {}^{8}Be + \gamma^{*} \rightarrow {}^{8}Be + e^{+}e^{-}$
- IPC (exotic): $({}^{8}Be)^{*} \rightarrow {}^{8}Be + X \rightarrow {}^{8}Be + e^{+}e^{-}$
- Background: real γ converting to $e^+e^$ from interaction with the apparatus = external pair conversion (EPC)

The ⁴He experiment (2019)

- [Krasznahorkay *et al.*, arXiv:1910.10459v1], [Firak *et al.*, EPJ Web Conf. **232**, 04005 (2020)]
- [Frankenthal, https://www.particlebites.com/?p=6696 (Jan. 4, 2020)] "The Delirium over Helium" for an update of the precedent *particlebites.com* report
- cerncourier.com/a/rekindled-atomki-anomaly-merits-closer-scrutiny/
- Reaction ${}^{3}\mathrm{H}(p, e^{-}e^{+}){}^{4}\mathrm{He}$, proton beam of 0.90 MeV

Figure 3. The Atomki nuclear spectrometer. This is an upgraded detecto

Angular distribution of the e^-e^+ pair (IPC+EPC)

M. Viviani (INFN-Pisa)

The X17 anomaly

The ⁴He experiment (2021)

[Krasznahorkay et al., arXiv:2104.10075]

• Reaction ${}^{3}H(p, e^{-}e^{+}){}^{4}He$, now 3 energies of the proton beam: 0.51, 0.61, and 0.90 MeV

The X17 anomaly

Measured angular distribution of the e^-e^+ pairs

GEANT analysis: Subtraction of the background of pairs created EPC processes

These announcements triggered new expt. activities

• • •

Courtesy by C. Gustavino (INFN-Rome)

	Experiment		
LHCb	Charm meson decay $D^{*}(2007)^{0} \rightarrow D^{0}A' A' \rightarrow e^{\cdot}e^{+}$		
Mu3e	Muon decay channel $\mu^+ \rightarrow e^+ \nu_e \ \overline{\nu_{\mu}} (A' \rightarrow e^+)$		
VEPP-3	$e^{\cdot}e^{+} \longrightarrow A' \; \gamma$		
KLOE-2	$e^{+}e^{+} \longrightarrow \gamma(X \longrightarrow e^{-}e^{+})$		
MESA	e-beam on gaseous target, to produce A'		
Darklight	e-scattering of H gas target, to produce A'		
HPS	e-beam on W to study $A' \longrightarrow e^{\cdot}e^{*}$ and $A' \longrightarrow \mu^{\cdot}\mu^{*}$		
PADME	e+ beam on diamond target e e $\to X\gamma$		
NA64	eZ →eZ +X17		
NSL	⁸ Be (A' →e-e+)		
⁸ BeP	⁸ Be (A' →e-e+)		
New JEDI	⁸ Be/ ³ He/d (A' →e-e+)		
Montréal	⁸ Be (A' →e-e+)		
NSCL	⁸ Be (A' →e-e+)		
IUAP CTU	⁸ Be and ⁴ He (A' —e-e+)		
n_TOF	⁴ He and ⁸ Be (A' →e-e+) (proton and neutron beams)		
MEG2	^s Be		
NUCLEX	⁸ Be		

Experiments involving people of INFN (INFN-Pisa)

- LNL: 7 Li($p, e^{+}e^{-}$) 8 Be NUCLEX
- PSI: ⁷Li(p, e⁺e⁻)⁸Be MEGII (Papa, Baldini, Cei, Chiappini, Donato, Francesconi, Galli, Grassi, Signorelli, ...)
- n_ToF at CERN: ³He(n, e⁺e⁻)⁴He (Carosi, Marcucci, Kievsky, MV)
- Belle II (Bettarini, Casarosa, Forti, Paoloni, Rizzo, Zani, . . .)

⁸Be experiment at PSI

Courtesy by A. Papa (INFN-Pisa)

MEGII CW accelerator and Fifth force target

Schedule

- Proton beam used to test the apparatus (built to study $\mu \rightarrow e$ process)
- The X-boson data taking period is scheduled for the beginning of next year (2022)
- A first test very successful test of gamma conversion has been done few days with the magnetic field off
- Several intermediate tests in 2021 are also scheduled during the maintenance main accelerator shut-down periods

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

and theoretical speculations...

- [Kozaczuk, Morrissey, & Stroberg, 2016] "Light axial vector bosons, nuclear transitions, and the ⁸Be anomaly"
- [Delle Rose, Khalil, & Moretti, 2017] "Explanation of the 17 MeV Atomki anomaly in a U(1)" -extended two Higgs doublet model"
- [Delle Rose, Khalil, & Moretti, 2019] "New Physics Suggested by Atomki Anomaly"
- [Feng, Tait, & Verhaaren, 2020] "Dynamical Evidence For a Fifth Force Explanation of the ATOMKI Nuclear Anomalies"
- [Fayet, 2020] "The *U* boson, interpolating between a generalized dark photon or dark *Z*, an axial boson and an axionlike particle"
- [Alves, 2020] "Signals of the QCD axion with mass of 17 MeV/c²: Nuclear transitions and light meson decays"

0

Most of the speculations based on "resonance saturation" Assumed mechanism $p + {}^{3}\text{H} \rightarrow ({}^{4}\text{He})^{*} \rightarrow {}^{4}\text{He} + X$, followed by the decay $X \rightarrow e^{+}e^{-}$

Motivation of this work:

- solve accurately the A = 4 nuclear dynamics
- include the contribution of all relevant waves
- treat the X17 interaction within the χ PT framework

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 10 / 41

X17 interaction with electrons

- $\Gamma = 1, \gamma^5, \gamma^\mu, \gamma^\mu \gamma^5, \dots$
- e =electric charge (e > 0)
- X(x) X17 field

$$\mathcal{L} = e\varepsilon_e \overline{e}(x) \Gamma e(x) X(x) + e\varepsilon_u \overline{u}(x) \Gamma u(x) X(x) + \cdots$$

X17 decay

- $X \to e^- e^+, \nu \overline{\nu}, \dots$
- Decay channel in e⁻e⁺ dominant [Feng et al., 2016–2020]
- $\Gamma_X \approx \varepsilon_e^2 \alpha M_X$
- The X17 must decay in the apparatus $\rightarrow |\varepsilon_e| > 10^{-5}$
- Beam dump experiments:
 - SLAC E141 |ε_e| > 2 10⁻⁴
 [Alexander *et al.*, 2017]
 - NA64 |ε_e| > 6.8 10⁻⁴ [Banerjee et al., 2020]
- Direct search in e^-e^+ experiments: KLOE2 $|\varepsilon_e| < 2 \ 10^{-3}$ [Feng *et al.*; 2016]

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 11 / 41

Proposed models

Introduction

Theoretical study of the A = 4 reactions

The ${}^{3}\mathrm{H}(p,e^{+}e^{-})^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n,e^{+}e^{-})^{4}\mathrm{He}$ processes

Incorporating the X17

M. Viviani (INFN-Pisa)

A (1) > A (2) > A

Theoretical study of the A = 4 reactions

Numerical techniques for A = 4 for scattering

- Faddeev-Yakubovsky methods [Lazauskas & Carbonell, 2004], [Deltuva & Fonseca, 2007]
- Expansion on a basis: NCSM [Quaglioni, Navratil & Roth, 2010], Gaussians [Aoyama et al., 2011], R-matrix [Descouvemont & Baye], HH [Kievsky, Marcucci, MV, et al., 2008], ...

Modern nuclear interactions

- Based on xEFT & x-perturbation theory [Weinberg, 1966], [Callan et al., 1969], [Gasser & Leutwyler, 1984]
- Expansion parameter Q/Λ_{χ} , $Q \sim m_{\pi}$, $\Lambda_{\chi} \approx 1$ GeV [Weinberg,1990-1992], [Ordoñez, Ray, & Van Kolck, 1996], [Epelbaum, Hammer, & Meissner, 2009] for a review
- NN interaction:
 - Lowest order (LO) $(Q/\Lambda_{\chi})^{0}$: one-pion-exchange potential + contact interactions
 - next-to-leading (NLO): 1 loop+dimensional regularization, etc
 - The various contributions can be visualized through TOPT diagrams
 - Cutoff Λ = 400 600 MeV for the non-perturbative regularization: the results should not depend on it
 - Example: N3LO500 \rightarrow interaction at N3LO with $\Lambda = 500 \text{ MeV}$
 - Still under progress (Efimov & universality, counting rule, ...)

▶ ◀ 볼 ▶ 볼 ∽ Q Q July 7, 2021 14 / 41

ヘロマ ヘ動 マイロマー

Modern nuclear interactions (continued)

- 3N interaction: developed at N4LO, but for the moment practical calculations are possible only at N2LO
- contact terms at N4LO [Girlanda, Kievsky, Marcucci, MV]

Various methods exist for estimating the "theoretical uncertainties" due to the truncation of the expansion [Epelbaum, Kreb, & Meissner, 2014], Bayesian method [Melendez *et al.*, 2019]

Interactions

See, for example [Epelbaum, 2010], [Machleidt & Entem, 2011]

NN interaction

- Jülich (up to N4LO) [Epelbaum, Krebs, & Meissner, 2014], [Reinert, Krebs, & Epelbaum, 2017]
- Idaho (up to N4LO) [Entem, Machleidt, & Nosyk, 2017]
- N3LO + Δ dof's (Norfolk Vla,...) [Piarulli *et al.*, 2018]

LEC's fitted to the NN database or πN database. Cutoff $\Lambda = 450 - 600$ MeV

3N interaction

- N2LO [Epelbaum et al, 2002] two LECS c_D and c_E: fitted to reproduce B(³H) and some other observable
- 3N force at N3LO & N4LO [Krebs et al., 2012-2013]
- +∆ dof's [Baroni *et al.*, 2018], [Krebs *et al.*, 2018]
- +13 new LEC's at N4LO [Girlanda et al., 2019-...]

The X17 anomaly

Benchmark test of 4N scattering calculations

N3LO500 potential $-{}^{3}$ He $(n, n)^{3}$ He elastic scattering

AGS= Deltuva & Fonseca - FY= Lazauskas & Carbonell - HH= present work

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 17 / 41

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

NN potentials up to N4LO [Entem, Machleidt, & Nosyk, 2017] Theoretical error estimated using the method proposed by [Epelbaum, Kreb, & Meissner, 2014]

 $\Delta X_{i} = \max[Q|X_{i} - X_{i-1}|, Q^{2}|X_{i-1} - X_{i-2}|, ...]$ with $Q = m_{\pi} / \Lambda$

Order	V _{NN}	W _{3N}
0	LO	_
1	NLO	_
2	N2LO	N2LO
3	N3LO	N2LO* (N3LO c _i from table IX of EMN17)
4	N4LO	N2LO ^{**} (N4LO c _i from table IX of EMN17)
		•

 c_D, c_E fitted to $B(^{3}H)$ and tritium GTME by [Marcucci

et al., 2018]

NN potentials up to N4LO [Entem, Machleidt, & Nosyk, 2017] Theoretical error estimated using the method proposed by [Epelbaum, Kreb, & Meissner, 2014]

 $\Delta X_{i} = \max[Q|X_{i} - X_{i-1}|, Q^{2}|X_{i-1} - X_{i-2}|, ...]$ with $Q = m_{\pi} / \Lambda$

Order	V _{NN}	W _{3N}
0	LO	_
1	NLO	_
2	N2LO	N2LO
3	N3LO	N2LO* (N3LO c _i from table IX of EMN17)
4	N4LO	N2LO ^{**} (N4LO c _i from table IX of EMN17)
		•

 c_D , c_E fitted to $B(^{3}H)$ and tritium GTME by [Marcucci

et al., 2018]

The X17 anomaly

NN potentials up to N4LO [Entem, Machleidt, & Nosyk, 2017] Theoretical error estimated using the method proposed by [Epelbaum, Kreb, & Meissner, 2014]

 $\Delta X_{i} = \max[Q|X_{i} - X_{i-1}|, Q^{2}|X_{i-1} - X_{i-2}|, ...]$ with $Q = m_{\pi} / \Lambda$

Order	V _{NN}	W _{3N}
0	LO	_
1	NLO	_
2	N2LO	N2LO
3	N3LO	N2LO* (N3LO c _i from table IX of EMN17)
4	N4LO	N2LO ^{**} (N4LO c _i from table IX of EMN17)
		•

 c_D, c_E fitted to $B(^{3}H)$ and tritium GTME by [Marcucci

et al., 2018]

NN potentials up to N4LO [Entem, Machleidt, & Nosyk, 2017] Theoretical error estimated using the method proposed by [Epelbaum, Kreb, & Meissner, 2014]

 $\Delta X_{i} = \max[Q|X_{i} - X_{i-1}|, Q^{2}|X_{i-1} - X_{i-2}|, ...]$ with $Q = m_{\pi} / \Lambda$

Order	V _{NN}	W _{3N}
0	LO	_
1	NLO	_
2	N2LO	N2LO
3	N3LO	N2LO* (N3LO c _i from table IX of EMN17)
4	N4LO	N2LO ^{**} (N4LO c _i from table IX of EMN17)
		•

 c_D, c_E fitted to $B(^{3}H)$ and tritium GTME by [Marcucci

et al., 2018]

NN potentials up to N4LO [Entem, Machleidt, & Nosyk, 2017] Theoretical error estimated using the method proposed by [Epelbaum, Kreb, & Meissner, 2014]

 $\Delta X_{i} = \max[Q|X_{i} - X_{i-1}|, Q^{2}|X_{i-1} - X_{i-2}|, ...]$ with $Q = m_{\pi} / \Lambda$

Order	V _{NN}	W _{3N}
0	LO	_
1	NLO	_
2	N2LO	N2LO
3	N3LO	N2LO* (N3LO c _i from table IX of EMN17)
4	N4LO	N2LO ^{**} (N4LO c _i from table IX of EMN17)
		•

 c_D, c_E fitted to $B(^{3}H)$ and tritium GTME by [Marcucci

et al., 2018]

Calculation of transition amplitudes

We need 1) initial/final wave functions 2) transition operators (currents & charges)

Initial/final wave functions

 Ψ_4 : ⁴He bound state wave function $J^{\pi} = 0^+$ Ψ_{1+3} : scattering wave function – decomposed in components of definite *LSJ*

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$\Psi_{1+3} = \sum_{LMSS_z J J_z} (\frac{1}{2}m_3 \frac{1}{2}m_1 | SS_z) (LMSS_z | JJ_z) 4\pi i^L Y_{LM}^*(\hat{p}) e^{i\sigma_L} \Psi_{1+3}^{LSJ}$$

p relative momentum

M. Viviani	(INFN-Pisa)

EM charge & currents transition operators

EM current from χ EFT

[Park *et al*, 1993], [Kolling *et al*, 2009], [Pastore *et al*, 2009] Including the Δ d.o.f. [Schiavilla *et al.*, 2018]

M. Viviani (INFN-Pisa)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reduced matrix elements (RMEs)

Multipole expansion of the transition operators (γ emission) expansion of $e^{i\boldsymbol{q}\cdot\boldsymbol{r}}$ + Wigner-Eckart theorem simplified by the fact that ⁴He is a $\boldsymbol{J}^{\pi} = 0^+$ state

$$\begin{split} \langle \Psi_4 | \hat{e}^{\dagger}_{\boldsymbol{q},\lambda} \cdot \boldsymbol{J}^{\dagger}(\boldsymbol{q}) | \Psi_{1+3}^{LSJJ_z} \rangle &\sim \quad C_J^{LSJ} , \qquad J \geq 0 \\ \langle \Psi_4 | \hat{e}^*_{\boldsymbol{q},\lambda} \cdot \boldsymbol{J}^{\dagger}(\boldsymbol{q}) | \Psi_{1+3}^{LSJJ_z} \rangle &\sim \quad (E_J^{LSJ} + \lambda M_J^{LSJ}) , \quad J \geq 1 \end{split}$$

Selection rules

Parity of
$$\Psi_4 = +$$
, parity of $\Psi_{1+3}^{LSJJ_z} = (-)^L$

state	$^{2S+1}L_{J}$	charge multipoles	current multipoles
0+	$^{1}S_{0}$	C_{0}^{000}	_
0-	³ P ₀	_	—
1+	${}^{3}S_{1}, {}^{3}D_{1},$	_	M_1^{LS1}
1-	$^{1}P_{1}, ^{3}P_{1},$	C_1^{LS1}	E_1^{LS1}
2+	$^{1}D_{2}, ^{3}D_{2},$	C_2^{LS2}	E_2^{LS2}
2-	${}^{3}P_{2}, {}^{3}F_{2},$	<u> </u>	M_2^{LS2}

${}^{3}\mathrm{H}(\boldsymbol{p},\gamma){}^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(\boldsymbol{n},\gamma){}^{4}\mathrm{He}$ EM captures

Interest

- BBN, production of ⁴He
- Dominated by the E_1 transition $1^- \rightarrow 0^+$
- No sensivity to interactions/MEC
- Real
 γ's conversion in e⁻e⁺
 from interaction with the
 apparatus
- → external pair convertion (EPC)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

The ⁴He transition form factor

M. Viviani (INFN-Pisa)

The X17 anomaly

The ⁴He transition form factor

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 23 / 41

Introduction

Theoretical study of the A = 4 reactions

The ${}^{3}\mathrm{H}(p, e^+e^-)^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n, e^+e^-)^{4}\mathrm{He}$ processes

Incorporating the X17

M. Viviani (INFN-Pisa)

4 A N

- A 🖻 🕨

The ${}^{3}\mathrm{H}(p, e^{+}e^{-}){}^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n, e^{+}e^{-}){}^{4}\mathrm{He}$ processes

"Standard" EM process $\frac{d^{6}\sigma}{d\epsilon d\hat{k} d\epsilon' d\hat{k}'} = \frac{\alpha^{2}}{8\pi^{3}} \frac{kk'}{Q^{4}v} \delta\left(E_{0} - \epsilon - \epsilon' - \frac{(\mathbf{p} - \mathbf{q})^{2}}{2M_{4}}\right)$ $\times \sum_{i} v_{i} R_{i}(q, \omega)$

$$\begin{split} E_0 &= E_p + B_4 - B_3 \approx 20 \text{ MeV}, \, \boldsymbol{q} = \boldsymbol{k} + \boldsymbol{k}', \, \omega = \epsilon + \epsilon', \, \boldsymbol{Q}^2 = \omega^2 - \boldsymbol{q}^2 > 0 \text{ "time-like"} \\ &\cos \theta_{ee} = \hat{k} \cdot \hat{k}', \, i = L, \, T, \, TT, \, TT', \, LT, \, LT' \end{split}$$

$$v_L = \frac{Q^4}{q^4} (\epsilon \epsilon' + \mathbf{k} \cdot \mathbf{k}' - m_e^2) \qquad R_L(q, \omega) = \sum_{m_1, m_3} |\langle \Psi_4 | \rho(\mathbf{q})^\dagger | \Psi_{m_1, m_3}^{(pt)} \rangle|^2 \sim \sum_{LSJ} |C_J^{LSJ}|^2$$

After integrating the δ over ϵ' and numerically over ϵ ($p_r = \epsilon' (k' - p \cos \theta' + k \cos \theta_{ee})/k'$)

$$\frac{d^4\sigma}{d\hat{k}d\hat{k}'} = \frac{\alpha^2}{8\pi^3} \int_{m_e}^{\epsilon_{max}} d\epsilon \left[\frac{kk'}{Q^4v} \frac{1}{1+\rho_r/M_4} \sum_i v_i R_i \right]_{\epsilon' \approx E_0 - \epsilon}$$

M. Viviani (INFN-Pisa)

The X17 anomaly

RME's: q dependence

$$C_J^{LSJ} \sim \langle \Psi_4 | \sum_{j=1}^A rac{1+ au_z(j)}{2} e^{im{q}\cdotm{r}_j} | \Psi_{1+3}^{LSJ}
angle$$

Behaviour at $q \rightarrow 0$

- $q = |\mathbf{k} + \mathbf{k}'| \rightarrow 0$: lepton pair emitted back-to-back
- $Q^2 = \omega^2 \approx E_0^2$ finite

•
$$v_L = \frac{Q^4}{q^4} (\epsilon \epsilon' + \mathbf{k} \cdot \mathbf{k}' - m_{\Theta}^2) \rightarrow 1/q^2$$

- A carefull calculation of the RMEs is needed: RMEs~ qⁿ, n > 0
- $\sum_{j=1}^{A} \frac{1+\tau_{z}(j)}{2} = 2$

•
$$e^{i\boldsymbol{q}\cdot\boldsymbol{r}_j} = 1 + i\boldsymbol{q}\cdot\boldsymbol{r}_j + \frac{1}{2}(i\boldsymbol{q}\cdot\boldsymbol{r}_j)^2 + \cdots$$

- $J^{\pi} = 0^+$: first contributing order q^2
- $J^{\pi} = 1^{-}$: first contribution order q
- $J^{\pi} = 2^+$: first contribution order q^2

글 🕨 🖌 글

${}^{3}\mathrm{H}(p, e^{+}e^{-})^{4}\mathrm{He}$ cross section in the one-photon-exchange approximation

Calculation using N3LO500/N2LO500 + χ EFT current by [Pastore *et al.*, 2009] NVIa/3Na* + χ EFT current by [Schiavilla *et al.*, 2018]

Multipole angular distribution as reported in [Tanedo,

www.particlebites.com/?p=3970]

Due to the simple *q* dependence of the RME's, no possible to explain any large angle "bump"

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 27 / 41

Introduction

Theoretical study of the A = 4 reactions

The ${}^{3}\mathrm{H}(p,e^{+}e^{-})^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n,e^{+}e^{-})^{4}\mathrm{He}$ processes

Incorporating the X17

M. Viviani (INFN-Pisa)

A (1) > A (2) > A

Incorporating the X17

Scales ...

- $E \sim 1$ TeV BSM mechanism (axion, SSM, . . .)
- E ~ 1 GeV: interaction with SM particles
- $E \sim 100$ MeV: interaction with hadrons $(N, \pi, ...)$
- *E* ~ 1 MeV: nuclear physics experiments

EFT approach

- Start with a generic interaction Lagrangian with electrons, u and d quarks, ...
- 2 Generate the interaction at hadronic level using χEFT
- Accurately compute the matrix elements of the generated operators

- Propagator of a massive particle $1/D_X = 1/(Q^2 M_X^2)$, where $Q^2 = (k + k')^2$
- $M_X \rightarrow M_X i \frac{\Gamma_X}{2}$
- Γ_X from the process $X \to e^+e^-$

•
$$\Gamma_X = \varepsilon_e^2 \alpha M_X \sim 1 \text{ eV}$$

•
$$D_X = Q^2 - M_X^2 + i M_X \Gamma_X$$
, as $\Gamma_X \ll M_X$

- ϵ = electron energy
- Condition Q² M_X² = 0 verified for *ϵ* = *ϵ_i*, *i* = 1, 2

• For
$$\epsilon \approx \epsilon_i$$
, $Q^2 - M_X^2 = \alpha_i(\epsilon - \epsilon_i)$

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

$$\frac{d^{5}\sigma}{d\epsilon\,d\hat{k}\,d\hat{k}'} = \sigma_{EM}(\epsilon) + \varepsilon_{\theta}\left[\frac{R_{X}(\epsilon)}{D_{X}} + \text{c.c.}\right] + \varepsilon_{\theta}^{2}\frac{R_{XX}(\epsilon)}{|D_{X}|^{2}} = \sigma_{EM}(\epsilon) + \frac{\varepsilon_{\theta}\left[R_{X}(\epsilon)\,D_{X}^{*} + \text{c.c.}\right] + \varepsilon_{\theta}^{2}R_{XX}(\epsilon)}{|D_{X}|^{2}}$$

No sensitivity to ε_e and the interference term!!!

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 30 / 41

Fit of the 2019 data

- In the perpendicular plane, the X17 signal appears for $\theta_{ee} > 110^{\circ}$
- only a counting rate is fournished no information on the flux/target/efficiencies
- Procedure:
 - rescale the ATOMKI rate by a factor so to reproduce the cross section for $\theta_{ee} < 110^{\circ}$
 - For these angles the cross section is EM only no unknown parameter
 - Fix M_X , ε_u , ε_d to reproduce the "bump"

Here there is also the problem of the EPC pairs!

M. Viviani (I	NFN-Pisa)
---------------	-----------

The X17 anomaly

Energy dependence RME's

S=scalar, P=pseudoscalar, V=vector, A=axial X17

Fit of the 2021 data

- For the 2021, the background has been somehow subtracted
- but the procedure it is still difficult to be applied
- Furthermore: finite angular/energy resolution of the target, geometry of the detector, efficiencies, etc.

For the moment

- let us study he dependence of the cross section on
 - beam energy
 - the *e*⁺*e*⁻ emission angles
- see if it is possible to extract information on the hypothetical X17

Comparison with the 2019 ATOMKI data

M. Viviani (INFN-Pisa)

July 7, 2021 34 / 41

Comparison with the 2021 ATOMKI data

pair emission in the perpendicular plane - peak fitted at 0.90 MeV

Out of the perpendicular plane study

 θ (θ') angle of the e^- (e^+) momentum with respect to the incident beam peak fitted at 0.90 MeV

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 36 / 41

Extracted coupling constants

$$\varepsilon_0 = \frac{\varepsilon_u + \varepsilon_d}{2}$$
 $\varepsilon_z = \frac{\varepsilon_u - \varepsilon_d}{2}$ $\left[2\varepsilon_u + \varepsilon_d = 0 \Rightarrow 3\varepsilon_0 + \varepsilon_z = 0\right]$

	N3LO500/N2LO500		NVIa/3NIa	
Case	ε_0	ε_{Z}	ε_0	ε_{Z}
S	$0.86 imes 10^{0}$	0	$0.75 imes 10^{0}$	0
Ρ	0	$5.06 imes10^{0}$	0	$4.82 imes10^{0}$
Р	$2.55 imes 10^{1}$	0	2.72×10^{1}	0
V	$2.56 imes 10^{-3}$	$-3arepsilon_{0}$	$2.66 imes 10^{-3}$	$-3arepsilon_0$
Α	$2.58 imes 10^{-3}$	0	$2.89 imes10^{-3}$	0

First rough estimates - very uncertain due to the aforementioned difficulties

Vector case	Pseudoscalar case	Axial case
 ε_{u,d} ~ 10⁻³ Feng <i>et</i> <i>al.</i>, 2016-2020] Consistent! 	 ε_{u,d} ~ 1 Alves, 2020], Delle Rose <i>et al.</i>, 2019] too small! 	 ε_{u,d} ~ 10⁻⁴ [Kozaczuk, Morrissey, & Stroberg, 2016] too small!
M. Viviani (INFN-Pisa)	The X17 anomaly	July 7, 2021 37 / 41

Geant studies for the n_ToF experiment

 3 He($n, e^{-}e^{+}$)⁴He at CERN (n_ToF) Lol approved - technical design in progress 4π detector/reconstruction of the tracks/particle identification [C. Gustavino *et al.*, 2021]

M. Viviani (INFN-Pisa)

The X17 anomaly

July 7, 2021 38 / 41

Introduction

Theoretical study of the A = 4 reactions

The ${}^{3}\mathrm{H}(p,e^{+}e^{-})^{4}\mathrm{He}$ and ${}^{3}\mathrm{He}(n,e^{+}e^{-})^{4}\mathrm{He}$ processes

Incorporating the X17

M. Viviani (INFN-Pisa)

A (1) > A (2) > A

Conclusions and perspectives

Analysis of the ⁴He ATOMKI "anomaly"

- Accurate description of the nuclear dynamics using state-of-the-art techniques
- Test using $F_{\mathcal{M}}(q)$ and $p + {}^{3}\text{H}$, $n + {}^{3}\text{He}$ EM captures data: OK!
- Contribution of the 1⁻ wave very significant at all energies
- Inclusion of the possible emission of an X17, vs. the energy beam and the emission angles

Perspectives

- Collaboration with the ATOMKI group
 - we sent them generated X17 events for different mass and couplings
 - GEANT analysis of their experiment currently in progress
- Collaboration with the n_ToF group
- analysis of the ${}^{3}\text{He}(n, e^{-}e^{+}){}^{4}\text{He}$ process
 - technical design in progress
 - GEANT analysis currently in progress
- Study of possible "standard" explanation
 - Two-photon exchange contribution [Aleksejevs et al., 2021] for ⁸Be
 - Repeat this study for ⁴He using our wave functions
- If the anomaly is confirmed, full *χ*EFT treatment of the X17-nucleon interaction
 M. Viviani (INFN-Pisa) The X17 anomaly July 7, 2021

40/41

Thank you for your attention!