

### **DYNamics and non equilibrium states of complex SYStems: MATHematical methods and physical concepts**

Coordinatore nazionale: Irene Giardina, ~ 30 strutturati

Catania

A. Rapisarda, A. Puchino, G.Falci, E. Paladino, A. Ridolfo, F. Pellegrino, G. Angilella, B. Spagnolo

• Firenze

L. Casetti, D. Fanelli, S. Iubinni, A. Mossa, P. Politi, S. Ruffo, R. Livi

#### Milano

R. Artuso, F. Borgonovo, F. Ginelli, G. Mantica

#### • Parma

R. Burioni, D. Cassi, S.M. Wimberger

#### • Roma

A. Giansanti, A. Campa, A. Cavagna, F. Cecconi, I. Giardina, F. Sylos Labini, M. Viale, A. Vulpiani

### **Main research themes**

#### Anomalous dynamics and transport

1.a Anomalous transport in Levy Glasses

**1.b** Quantum transport

1.c Active transport in crowded environments

**1.d** Neuronal avalanches

1.e Dynamics of complex networks

Long-range models

**2.a** The unconstrained ensemble

2.b Systems with competing interactions

2.c Self gravitating systems

2.d Long-range coupled spin systems

#### Emergent collective dynamics in active and living matter

**3.a** Response in active systems

3.b Critical field theory for inertial swarms

3.c Confined active matter

**3.d** Non equilibrium thermodynamics and Information processing in stochastic systems

**3.e** Model building and statistical inference

### **Active matter**

Active particles are able to extract and dissipate energy from their surroundings to produce systematic and coherent motion

- Energy enters and exits the system  $\rightarrow$  out of equilibrium
- Energy is spent to perform actions, typically move (self-propel) in a non-thermal way
- In active systems, energy is injected and dissipated in the bulk, not from the boundaries, in a way that does not explicitly breaks any simmety

For a gentle intro: S. Ramaswamy, Annu Rev Cond Mat Phys 1 323 (2010).

# Simplest model for active particles ?

#### Persistent random walkers





At length scales >> l<sub>pers</sub> undistinguishable from a standard random walk

Nonequilibrium effects emerge (MIPS, rectification of thermal fluctuations, etc.) emerge when interacting on scales << l<sub>pers</sub>

### Optimal transport properties in a crowded environment



# **Collective motion in living system**









# Collective motion follows spontaneous symmetry breaking of a continuous symmetry

Slow massless modes (Nambu-Goldstone)



- 1. The system is neutral towards small fluctuations in the velocity orientation velocity fluctuations correlations are long ranged
- 2. Particles actually move one w.r.t. each other according to velocity fluctuations also density fluctuations become long ranged

Verified by experimental measures in starling flocks and epithelial cells:



# **Collective behaviour in living groups: flocks, swarms and cells**











- Statistical analysis of coll
- Statistical inference: fror

### 1fo-propagation

- How do coordination arises
- What features regulate robu
- Can we define behavioral classes:

Irene Giardina (Dept.), Andrea Cavagna, Stefania Melillo (ISC)

www.cobbs.it

#### A. Cavagna – ERC advanced Grant

Renormalization group approach to the collective behaviour of strongly correlated biological systems

#### Dynamical Renormalization Group Approach to the Collective Behavior of Swarms

Andrea Cavagna,<sup>1,2</sup> Luca Di Carlo,<sup>2,1</sup> Irene Giardina,<sup>2,1,3</sup> Luca Grandinetti,<sup>4</sup> Tomas S. Grigera,<sup>5,6,7</sup> and Giulia Pisegna<sup>2,1,\*</sup>

<sup>1</sup>Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy <sup>2</sup>Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy <sup>3</sup>INFN, Unità di Roma 1, 00185 Rome, Italy

<sup>4</sup>Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino, Italy <sup>5</sup>Instituto de Física de Líquidos y Sistemas Biológicos CONICET—Universidad Nacional de La Plata, B1900BTE La Plata, Argentina

<sup>6</sup>CCT CONICET La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, B1904CMC La Plata, Argentina <sup>7</sup>Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina

(Received 8 May 2019; published 23 December 2019)

We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z = d/2, and a stable fixed point with z = 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z = 3/2, a value significantly closer to the experimental window,  $1.0 \le z \le 1.3$ , than the value  $z \approx 2$  numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.

#### **1.** Precise numerical assessment of hydrodynamic theories

PHYSICAL REVIEW LETTERS 123, 218001 (2019)

Editors' Suggestion

#### Quantitative Assessment of the Toner and Tu Theory of Polar Flocks

Benoît Mahault<sup>®</sup>,<sup>1,2</sup> Francesco Ginelli,<sup>3,4</sup> and Hugues Chaté<sup>1,5,6</sup> <sup>1</sup>Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France <sup>2</sup>Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany <sup>3</sup>Department of Physics and Institute for Complex Systems and Mathematical Biology, Kings College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom <sup>4</sup>Dipartimento di Scienza e Alta Tecnologia and Center for Nonlinear and Complex Systems, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy <sup>5</sup>Beijing Computational Science Research Center, Beijing 100094, China <sup>6</sup>LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France

|                      | d = 2 |          | d = 3 |                | $d \ge 4$  |
|----------------------|-------|----------|-------|----------------|------------|
|                      | TT95  | Numerics | TT95  | Numerics       | Mean-field |
| χ                    | -0.20 | -0.31(2) | -0.60 | $\simeq -0.62$ | 1 - d/2    |
| ξ                    | 0.60  | 0.95(2)  | 0.80  | $\simeq 1$     | 1          |
| $\zeta \equiv d - 1$ | 1.20  | 1.33(2)  | 1.60  | 1.77(3)        | 2          |
| $+2\chi+\xi$         |       |          |       |                |            |
| Z                    | 1.20  | 1.33(2)  | 1.60  | <b>≃</b> 1.77  | 2          |
| GNFs                 | 1.60  | 1.67(2)  | 1.53  | 1.59(3)        | 1 + 2/d    |







$$T_2 \propto \frac{R^{3/2}}{\sqrt{\sigma}}$$

Eq. droplets



Flocks

 $2/3 < \upsilon/3 < 1,$ 

3. Response to external fields (linear regime, finite perturbations, etc.)



Infrared SF divergence is suppressed

$$S_{\rho}(q) \sim \frac{1}{\langle \bar{b} \rangle q^z + h}$$

Diverging longitudinal susceptibility

$$\chi_{\prime\prime} = \frac{\delta \Phi(h)}{h} \sim h^{-\nu} \qquad h \gg L^{-z}$$

 $v \approx 0.6$ 

### **Experiments: Longitudinal response and susceptibility**



#### 4. Confined systems, Casimir forces in Flocking



 $P \propto L^{\alpha-1}$ 

