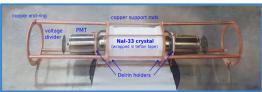

stituto Nazionale di Fisica Nucleare

SABRE-PoP results and CDR for the physics phase

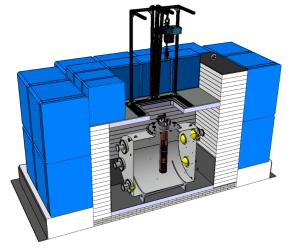
D. D'Angelo Milano CdS - 09.07.2021

Dark Matter Annual Modulation

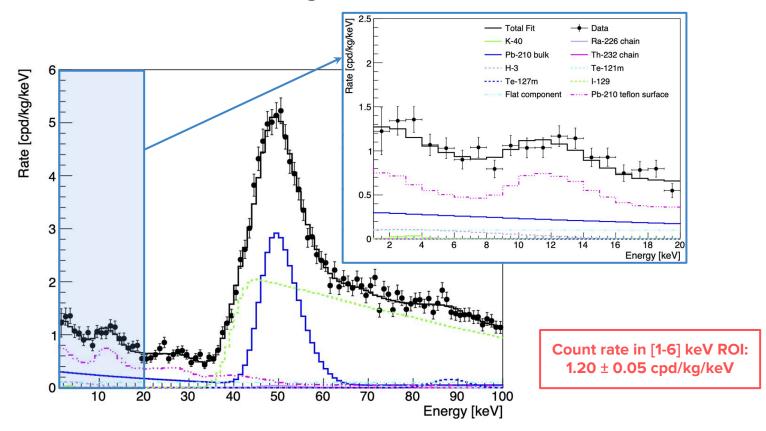


- Observed by DAMA on <u>Nal(Tl)</u> scintillating crystals (250kg) @LNGS
- 20 annual cycles <u>12.9σ significance</u>
- Period + Phase + Amplitude compatible with Dark Matter
- NOT observed with other techniques -> model dependent comparison
- <u>Strong need to verify it with Nal(Tl) and better sensitivity</u>

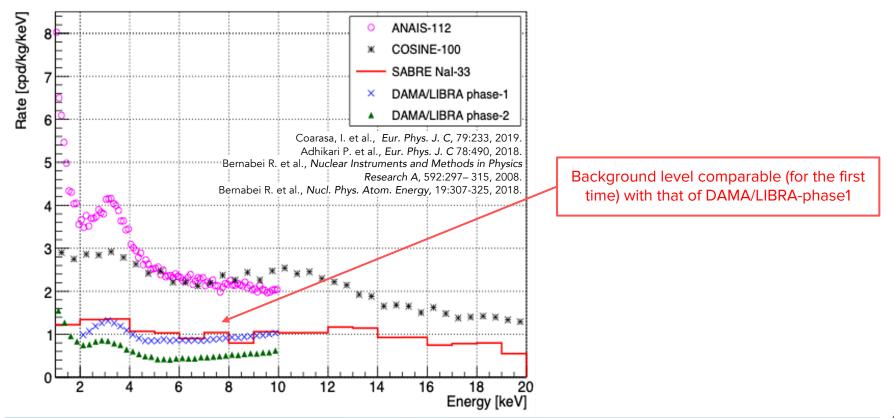
SABRE PoP


- SABRE was approved by INFN in 2016 as Proof-of-Principle phase (PoP).
- Commissioned in early 2020 at LNGS Hall C (next to Borexino)
- Data taking until September 2020, before being stopped due to technical maintenance
- Decommissioning in 2021.

- Goal: full characterization in liquid scintillator veto of at least 1 crystal with lower backgrounds w.r.t. DAMA
- 1 detector module at a time:
 - 5kg Nal(TI) crystal wrapped with PTFE coupled to 2 PMTs in a copper enclosure;
- 2 ton liquid scintillator (LS) active veto;
- **Passive shielding:** polyethylene and water.


Results from SABRE PoP crystals

- Light yield (LY) and energy resolution (FWHM/E) competitive with other Nal(TI)-based experiments;
- Direct counting of radioactive ⁴⁰K using coincidences with LS veto confirmed ICP-MS measurements for both Nal-31 and Nal-33 crystals:
 - ^{nat}K in Nal-31: 15.7 ± 3.2 ppb;
 - natK in Nal-33: 2.2 ± 1.5 ppb, or < 4.7 ppb at 90% CL (direct gamma counting!)
- Alpha rate still higher than DAMA, but lower than ANAIS and COSINE crystals.


	Nal-31	Nal-33	DAMA/LIBRA crystals	ANAIS crystals	COSINE crystals
LY [phe/keV]	9.1 ± 0.1	12.1 ± 0.2	6-10	15	15
FWHM/E @59.5 keV	14.1%	13.2%	15.8%	11.2%	11.8%
George Wer		Low	vest level ever	achieved in N	<u>al(TI) crystals</u>
^{nat} K [ppb]	17.7 ± 1.1	4.6 ± 0.2	< 20	17-43	17-82
³ H [mBq/kg]	-	0.012 ± 0.007	< 0.09	0.09-0.20	0.05-0.12
Alpha rate [mBq/kg]	1.02 ± 0.07	0.54 ± 0.01	0.08-0.12	0.7-3.15	0.74-3.20

Results from SABRE crystals characterization in comparison with other Nal-based experiments.

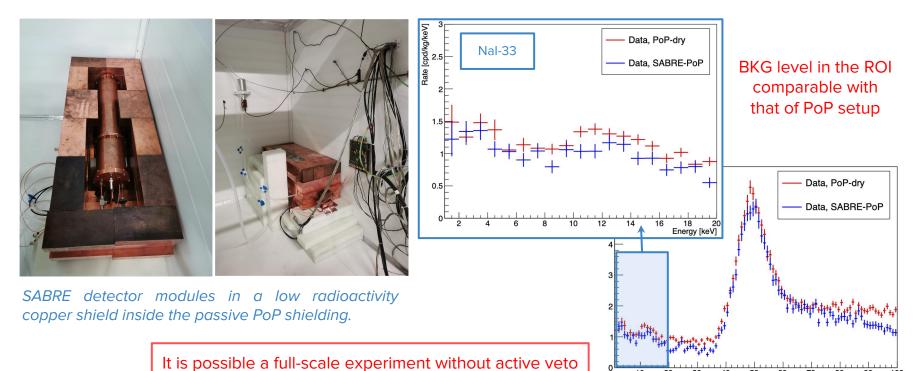
SABRE PoP Nal-33 background model

Comparison with other NaI(TI)-based experiments

SABRE PoP Nal-33 background model

Source	Activity	Rate in ROI [cpd/kg/keV]		
⁴⁰ K	(0.14 ± 0.01) mBq/kg	0.018 ± 0.001		
²¹⁰ Pb (bulk)	(0.41 ± 0.2) mBq/kg	0.28 ± 0.01		
²²⁶ Ra	(5.9 ± 0.6) µBq/kg			
²³² Th	(1.6 ± 0.3) μBq/kg	0.0044 ± 0.0005		
³ Н	(12 ± 7) μBq/kg	≤ 0.12		
129	(1.34 ± 0.04) mBq/kg			
^{121m} Te	≤ 84 µBq/kg	≤ 0.011		
^{127m} Te	(16 ± 6) µBq/kg			
²¹⁰ Pb (PTFE)	(1.1 ± 0.2) mBq	0.63 ± 0.09		
Flat component		0.10 ± 0.05		
Total		1.16 ± 0.10		

The background model indicates that the **count rate in the [1-6] keV ROI** is **mostly due to a ²¹⁰Pb contamination in the PTFE reflector** wrapped around the crystal.


Tab. 2 - Background components in NaI-33 from the spectral fit and current rate in ROI (1-6 keV). Upper limits are given as one-sided 90% CL. Rates are conservatively calculated using upper limits.

Recent publications related to SABRE PoP activity

- 1. High sensitivity characterization of an ultra-high purity Nal(TI) crystal scintillator with the SABRE proof-of-principle detector,
 - accepted by PRD, e-print 2021
- Characterization of SABRE crystal NaI-33 with direct underground counting, Eur. Phys. J C 81 (2021) 4, 299

PoP-dry

In 2021 we modified the Hall C PoP setup to restart crystals characterization without the liquid scintillator veto.

10

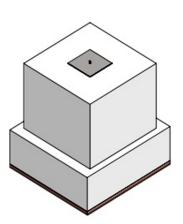
20

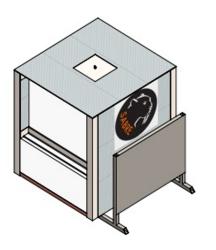
9

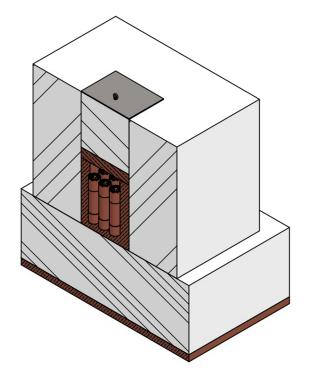
Energy [keV]

SABRE North CDR

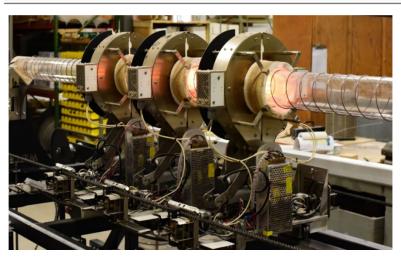
We just presented to CSN2 the CDR for the physics phase of SABRE


Outlined:


- The physics case and motivations 1.
- 2. The proposed detector design and its ancilla "parameters"


	Litituto Nazionale di Fisica Nucleare	DocID INFN-PM-QA-503	Rev. Validità 1.0 Rilasciato
			Date 02/07/2021
		SABRE North	
	This document outlines SABRE North experin detailing all subsystems	ptual Design Report the conceptual proposal for the nent. The new detector concep is and the steps required to get n two years after the project ap	next physics phase of the tual design is described, to the start of data taking,
,		n wo years aller the project ap	proval.
,	Autore	Verificato da	
,			Approvato da Chiara Vignoli (RN)

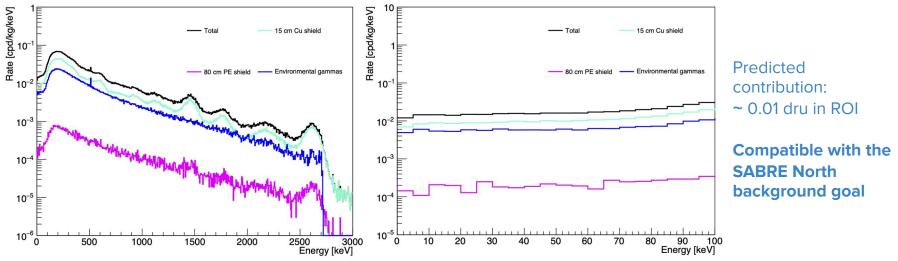
Design SABRE North


- No liquid scintillator is necessary thanks to the high purity of th crystals -> <u>environmental compliant with LNGS restrictions</u>
- 3 x 3 matrix of 5 kg Nal detectors
- Inside 5 mm thick Cu box
- 15 cm Cu and 80 cm PTFE shielding structure
- Vertical crystals deployment
- Optimized re-use of existing material from PoP

Crystal production strategy

- 1. Nal powder treated with Zone Refining purification metod
 - Equipment already owed and tested by the collaboration
- Growth by Radiation Monitoring Devices Inc. (Boston, USA)
 - Grew Nal-33 and others since several years.
- 3. Specially produced PTFE with low radioactivity already used in:
 - a. CUORE: ~ 130 μBq/kg
 - b. DarkSide-50: < 38 mBq/kg

Isotope	Impurity concentration (ppb)					
	Powder	S_1	S_2	S_3	S_4	S_5
³⁹ K	7.5	< 0.8	< 0.8	1	16	460
208 Pb	1.0	0.4	0.4	< 0.4	0.5	0.5
85 Rb	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.7
^{24}Mg	14	10	8	6	7	140
^{133}Cs	44	0.3	0.2	0.5	3.3	760
^{138}Ba	9	0.1	0.2	1.4	19	330

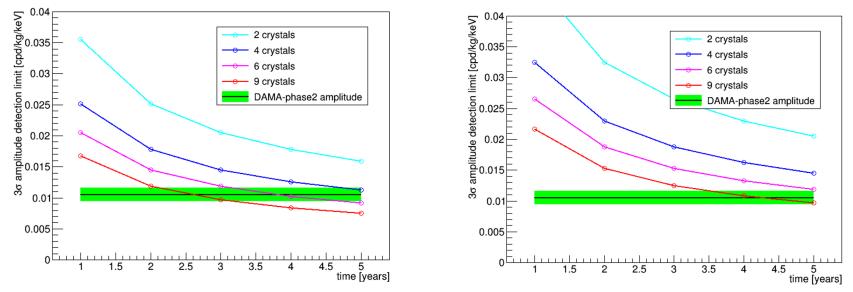


Simulations of SABRE North passive shielding

The PoP measurement, backed up by simulations, provides a very good understanding of the background from the detector module (crystal + PMTs + enclosure)

We ran additional simulations to estimate the background contribution due to the new passive shielding configuration:

- external gammas (input flux: 1 gamma/cm²/sec from SABRE measurements)
- radioactive contaminants in the shielding materials (input from screening measurements)


SABRE North Sensitivity

• Crystal nominal mass = 5 kg

Conservative option with 0.5 cpd/kg/keV in ROI

(only PTFE replacement)

WP & Gantt Chart

Validation and construction

				Yea	ar 1	Ye	ar 2	Ye	ar 3	
		WP	Item	1 sem	2 sem	1 sem	2 sem	1 sem	2 sem	
			Clean PTFE procurement							
			Crystal Nal 34 production							
	WP1	P1 Crystals and Detector module	Test of clean PTFE, of Nal-34, of australian crystal		M1.1 - M1.2					
			Array production (x9)			M1.3 - M1.4				
			Enclosures (x7)							
involved —			PMTs procurement and tests							
			Assembly of detector modules and tests							
			Source procurement							
	WP2		Copper +PE basement		M2.2					
		VP2 Shielding and site logistics	PE shielding		M2.2					
			Copper shielding				M2.3			+2yr running?
			Extrenal AI house							
			Glove box installation	M2.1						
			Fluid handling and slow control							
Milano			Paperwork							
Milano responsible	WP3	Electronics and	Electronics procurement and test							
responsible 👅	WP3	DAQ	DAQ software				M3.1			
•			Detailed simulation of the shielding							
	WP4	Simulations and	Simulation of the full array			M4.1				
involved	VVP4	data analysis	Data analysis framework				M4.2			
			Data analysis							
	TDR	TDR				MO				
									→ Data	taking starts

Budget

Full size experiment: short of 800k thanks to: no liquid scintillator reuse of existing equipment

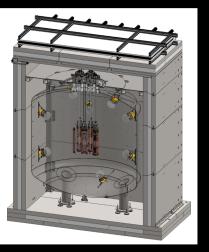
Not included: running costs, missioni and 2x2yr post-doc (junior AdR)

Subsystem	ltem	Sub-item	# of sub-items	Quantity/set per unit	Total quantity	Available quantity	Expose Cost (keuro	
		Astrograde Powder + ZR	9 + 1 spare	≈ 10 kg	≈ 100 kg	30 kg		
Detector Modules	Crystal	Crucible, RMD: Growth + Cut + Polishing	9 + 1 spare	1	10	0	400	
	Crystal enclosure	Cu enclosure + crystal holders + accessories	9 + 1 spare	1	10	3	120	
	PMTs	2 x 3" Hamamatsu PMTs + 2 x bases + accessories	18 + 4 spare	2	20	10	60	
	Calibration system	Sources	4	-	4	3	5	
	Cu box	Cu box (50x50x80 cm3)	1	1	1	0	5	
	Inner Cu shielding	Cu bricks (20x10x5 cm3, 9 kg each)	15 cm layer	-	504	270	60	
	Outer PE shielding	Polyethylene	80 cm layer	-	20 m3	20 m3	0	
Shielding	Cu basement	Cu bars (295x280x10 cm3, 7.35 t)	10 cm layer	-	0.8 m3	0.8 m3	0	
	Outer box	Aluminum	1	-	1	1	10	
	Shielding machining and mounting	PE slab refurbishment,	-	-	-	-	20	
	Services	Installation and transport					25	
	HV System	HV CAEN V6534N (6ch)	18 ch + spares	3brd + 1 spare	4	1	10	
Electronics and DAQ	Digitizers	Digitizers CAEN V1720/1730 (8 ch)	27 channels	4brd + 1spare	5	3	15	
DAQ	Amplifiers custom 8ch	Amplifiers	18 channels	3brd + 1 spare	4	1	5	
	Workstations and disks	Workstations and disks	2 WS + disk	2	2	0	15	
	Gas handling & Slow control	SCADA programming,					10	
	Temperature stabilization	PID, sensors,heating,					10	
Area infrastructure	Utilities and control room	Power, UPS, network, cooling				avaliable	-	
	Glove box	Installation and comissioning	sensors, gas panel				10	
	Authorization documents	SCIA,					10	
					Total (structural)	790	
	GN2 consumptions	shielding + GB					15	
Running costs	Consumables	GB consumables, sensors,					20	
(per year)	Maintenance	plant maintenance					5	
	Services and transports	crane operators, mapower,					10	
					Total R	C per year	50	

2022 anagrafica e richieste Milano

Milano	FTE
Davide D'Angelo (resp. loc.)	0.4
Andrea Zani	0.4
Maddalena Antonello	0.5
Totale Milano	1.3

(invariata) richiesto AdR a partire dal 2023


Totale nazionale (LNGS + Milano + Roma1): 6.7 FTE resp. naz. Chiara Vignoli (LNGS)

Responsabilità di Milano: WP3 Electronics and data taking Altre attività: test PMTs, data recontruction framework

Richieste finanziarie 2022 da definire

Richieste servizi: Elettronica: 0.5 m.u.

Sabre South twin experiment

- SABRE Full scale experiment in two different laboratories
- → on opposite hemispheres
- Twin detectors for reduced systematics
- SUPL laboratory completing installation
- SABRE-South detector under construction

Any season- or site-related contribution to the modulation can be identified buy phase and amplitude