

IstitutoNazionale di FisicaNucleare SEZIONE DI LECCE

BOLAS-NEXT

Flexible ¹⁰ B-based converter deposited by the laser ablation technique

Preventivi 2022

Gianluca QUARTA

Dipartimento di Matematica e Fisica "Ennio de Giorgi" Università del Salento INFN-Sezione di Lecce

Outline

Introduction

INTEREST: Radiation portal monitors for home-land security and nuclear safeguards,

workplace safety, cargo containers screening, material investigation based on neutron scattering, energy production and neutron monitoring in NPP, nuclear power instrumentation, cancer therapy, cultural heritage studies

Neutron detection: Neutrons are detected through nuclear reactions that result in prompt energetic charged particles such as protons, alphas, and so on

Introduction

Main neutron conversion reactions:

Reaction	Q value (MeV) Products energy (MeV)		Cross section (b) @0.0253 eV
³ He (n, p) ³ H	0.764	E _p = 0.573 E _τ = 0.191	σ = 5320
⁶ Li (n, α) ³ H	4.78	E _α = 2.05 E ₇ = 2.73	σ = 942
¹⁰ Β (n, α) ⁷ Li	2.792 (6%)	E _α = 1.78 E _{Li} = 1.01	
¹⁰ Β (n, α) ⁷ Li*	2.310 (94%)	$E_{\alpha} = 1.47$ $E_{Li} = 0.84$ (E_= 0.48)	σ = 3842
High conversion cross section High natural abundance (cheap)			⁷ Li 02 MeV α 78 MeV Neutron ¹⁰ B 94% 94% 94% 147 MeV 1480 keV 1880 keV 1880 keV 1880 keV 1880 keV 1880 keV 1880 keV 1880 keV 1880 keV 1880 keV 180 k
	High Q Long products'rang	ge in the converter	³ $_{H}$ $\overset{\bullet}{\overset{\bullet}}_{Li}$ $\overset{\circ}{\overset{\circ}}_{Li}$ $\overset{\alpha}{\overset{\circ}}_{2.05 MeV}$ Mc Gregor et al. NIMA 2003

Introduction

Main neutron conversion reactions:

Reaction	Q value (MeV)	Products energy (MeV)	Cross section (b) @0.0253 eV	
³ He (n, p) ³ H	0.764	$E_p = 0.573$ $E_T = 0.191$	σ = 5320	
⁶ Li (n, α) ³ H	4.78	E _α = 2.05 E _τ = 2.73	σ = 942	
¹⁰ Β (n, α) ⁷ Li ¹⁰ Β (n, α) ⁷ Li*	2.792 (6%)	E _α = 1.78 E _{Li} = 1.01		
	2.310 (94%)	$E_{\alpha} = 1.47$ $E_{Li} = 0.84$ (E_{a} = 0.48)	σ = 3842	

³He is running out

¹⁰B based conversion

Deposition of ¹⁰B enriched films in order to realize a flexible neutron converter.

- High neutron capture cross section
- ['] Low cost/high natural isotopic abundance of ¹⁰B (19.8 %)

Shorter range of capture products (compared to ⁶LiF) Gamma emissions from capture products

→ Pulsed Laser Deposition

The ideal technique should allow the deposition of films wit

- Low impurities (i.e. C and O) content (high ¹⁰B content)
- Low residual mechanical stress and high adhesion;

Bolas-NEXT : results

The expected results from BoLAS have been fully achieved:

- Deposition of pure B films with thickness in the 0.5-2 μ m range
- Good films quality in term of morphology, adhesion, uniformity
- Deposition on different substrates can be carried out (@RT)
- Thermal neutron detection has been demonstrated
- Experiments in agreement with MC simulations

50 mm

Carbon fiber substrate + B film

Bolas : Deposition of ¹⁰B films - uniformity

Good adhesion and film uniformity has been obtained also on carbon fiber substrates

GEANT4 Montecarlo simulations

GEANT4 Montecarlo simulations: results

Distribution of the simulated z-direction cosine of α

for the 1.5 μ m converter

GEANT4 Montecarlo simulations: results

Neutron irradiation: Test set up@INFN-LNS

Neutron source: AmBe Flux : 2.2 x10⁶ n/s (4π)

The source is surrounded by a first PE case and by 30 cm thick paraffin that slows down high energy neutrons (up to 10 MeV). The outer 5 cm of the shielding are made of borated paraffin stopping the vast majority of the outgoing thermalized neutrons

Gamma background substraction strategy

Neutron irradiation results

Neutron irradiation results

Neutron irradiation: comparison with simulation

Very good agreement!

Detector efficiency

Detector efficiency was determined since the thermal n flux in the reference position was measured by means of an identical silicon detector featuring a 1.6 μ m thick ⁶LiF converter on carbon fiber, whose detection efficiency had been previously calibrated in a certified thermal neutron field

Bolas – NEXT: New geometries and devices

- We propose a "sandwich" detection geometry:
- Two identical substrates are used: with and without the conversion layer
- Two Si-detectors are simultaneously used to detect two energy spectra
- The final spectrum is obtained by subtraction

Bolas – NEXT: New detectors

We propose the coupling between ¹⁰B PLD grown films and plastic scintillators (PSS):

Quaranta et al., Journal of Non-Crystalline Solids, 2011 28

10**B**

¹⁰B : project activities

SCHEDULE

Table: Organization of the project in four different work-programs (WPs) with indication of the main unit responsible of the activities with corresponding milestones, timing and expected results.

Unit	Milestones	Time (months)		
WP1 - Development of new geometries with Si-Detectors, comparison with ⁶ LiF				
INFN- Le+LNS	1. Definition of deposition geometries, MC simulations	0-3		
INFN-	2. Deposition and characterization of ¹⁰ B-enriched thin films	3-6		
Definitio Depositi Characte	Expected Results on of the proper geometries in terms of substrates, thickness and dimensions on of ¹³ B-enriched thin films with the proper thickness rization of the deposited films by SEM/TEM/XRD/IBA methods			
	WP2 - ¹⁰ B deposition on plastic scintillators	15		
INFN- LetTIPPA	3. Definition of geometries for ¹⁰ B enriched thin films deposited on PSS.	0-3		
INFN- Le+TIFPA	4. Preparation and growth of the PSS substrates	3-9		
INFN-Le	5. Determination of experimental condition for ¹⁰ B enriched thin films deposition	6-9		
INFN- Le+TI	6. Deposition and characterization of ¹⁰ B-enriched thin films	9-12		
Determina Determina Characteriz	tion of the proper geometries of the PSS substrates and of the ¹⁰ B films tion of the experimental condition for PLD deposition (wavelength, fluence, geometry) ation of the deposited structures including the scintillation properties of PSS WP3 - Hybrid Si/PSS devices			
INFN- Le+TIFP A+LNS	7. Definition of the experimental set-up	12-15		
INFN-Le	8. Deposition of the conversion layers on PSS and on CF/Al	15-18		
Definition Growth of	Expected results of the experimental set-up and of the involved geometries the conversion layers and preparation of the devices.			
WP4 - Tests of the detectors				
INFN- Le+LNS	8. Set-up of the prototype and test of the double Si-based detector, comparison with ⁶ LiF	6-12		
Let TI	9. Test of the PSS-based detector	6-12		
INFN- Le+TIF	9. Test of the hybrid Si/PSS device	15-24		
Determina Validation Assessmen	Expected results tion of the performance of the detectors of the proposed solutions t of the efficiency of the detectors	<u>.</u>		

- M1. Set-up of the prototype
- M2. Deposition of ¹⁰B on PSS

M3. Test of the prototype/comparison with ⁶LiF

- **M4.** Test of the ¹⁰B/PSS system
- **M5.** Test of the hybrid devices

Bolas-Next : Paper

Thermal neutron conversion by high purity ¹⁰B-enriched layers: PLD-growth, thickness-dependence and neutron-detection performances

Anna Paola Caricato^{1,2}, Maura Cesaria¹, Paolo Finocchiaro⁴, Simone Amaducci⁴, Fabio Longhitano⁵, Chiara Provenzano^{1,2}, Marcella Marra¹, Maurizio Martino^{1,2}, Muhammad Rizwan Aziz¹, Antonio Serra^{1,2}, Daniela Manno^{1,2}, Lucio Calcagnile^{2,3}, Gianluca Quarta^{2,3}

¹Department of Mathematics and Physics "Ennio De Giorgi"-University of Salento-Lecce, Italy ²National Institute of Nuclear Physics (INFN) –Lecce, Italy ³CEDAD (Centro of Applied Physics, Dating and Diagnostics)-Department of Mathematics and Physics "Ennio De Giorgi"-University of Salento-Lecce ⁴National Institute of NuclearPhysics (INFN) – Laboratori Nazionali del Sud, Catania, Italy ⁵National Institute of NuclearPhysics (INFN) – Sezione di Catania, Catania, Italy

*Corresponding author: annapaola.caricato@unisalento.it

keywords: neutron detection, neutron converter, ³He replacement, ¹⁰B films, pulsed laser deposition, thickness dependence, silicon detectors, room temperature

Abstract

Neutron applications and detection are of paramount importance in industry, medicine, scientific research, homeland security, production of extreme UV optics and so on. Neutron detection requires a converter element that, as a result of its interaction with neutrons, produces reaction products (mainly charged particles) whose detection can be correlated with the source neutron flux/fields. Reduced availability and increased cost of the most used converter element, 3He, have triggered research efforts for alternative materials, proper deposition methods, and new detector architectures.10B converter is a valid alternative to 3He thanks to its high capture cross section for thermal neutrons and relatively high Q factor. In this paper we report on the room temperature Pulsed Laser Deposition (PLD) of high quality and uniform 10B films with the expected density, different thickness values (0.5, 1, 1.2, 1.5 and 2 μ m) and uniform thickness over a circular area of about 30 mm in diameter. Additionally, they are adherent to the substrate with a negligible presence of contaminants. The conversion properties of such 10B coatings coupled to a Si solid state detector are studied upon exposure to a neutron flux from an Am-Be neutron source (2.2·106 n/s). The experimental results compared with spectra simulated by using a GEANT4 code, present a good agreement and efficiencies of the order of a few percent.

The European Physical Journal

Focus Point

EPJ Plus Recognized by European Physical Society

Focus Point on on Rewriting Nuclear Physics Textbooks: Basic Nuclear Interactions and Their Link to Nuclear Processes in the Cosmos and on Earth edited by N. Alamanos, C. Bertulani, A. Bonaccorso, A. Bracco, D. Brink, G. Casini, M. Taiuti

IF=3.2

Bolas-Next : Conferences

PLD-grown, isotopically enriched ¹⁰B thin films for thermal neutron detection

Gianluca QUARTA (1,2)

A. Caricato ^(2,3), S. <u>Amaducci</u> ^(4,5), P. Finocchiaro⁽⁴⁾, M. Martino^(2,3),
M. Cesaria⁽³⁾, C. Provenzano^(1,2,6), D. Manno^(1,2), A. Serra^(1,2), M. Marra^(2,3), L. Calcagnile^(1,2)

(1) CEDAD, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, (2) National Institute of Nuclear Physics (INFN) _Lecce Section (3) Department of Mathematics and Physics "Ennio De Giorgi", University of Salento (4) National <u>Institute of Nuclear</u> <u>Physics</u> (INFN) - Laboratori Nazionali del Sud, Catania (5) Department of Physics and Astronomy, University of Catania (6) Department of <u>Engieering</u> for Innovation, University of Salento, Italy

Plenary Talk 7th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications

Comunicazioni SIF

Provenzano et al. PLD deposition and characterization of 10B based conversion layers for thermal neutron detectors: results of the BoLAS-INFN experiment

Marra et al. Coupling PLD-grown isotopically enriched boron with semiconductor and scintillator detectors

Applied Nuclear Physics Conference 2021

Amaducci et al.- PERFORMANCES OF A COMPACT NEUTRON DETECTOR USING HIGH PURITY ¹⁰B-ENRICHED PLD-GROWTH FILMS

Società Italiana di Fisica

ATTIVITA' SPERIMENTALI

TURNO DI MISURA A CATANIA-LNS (SETTEMBRE 2021)

Test del prototipo di rivelatore a «sandwich», irraggiamenti con sorgente AmBe, Simulazioni GEANT4-Montecarlo

TURNO DI MISURA A LECCE-LABORATORIO ACCELERATORE (13-15 LUGLIO) Misure di ionoluminescenza da protoni su campioni di PSS

TURNO DI MISURA A LEGNARO Test di rivelatori PSS a scintillazione

OUTCOME: Tesi di dottorato di ricerca

Chiara Provenzano-Dottorato in Ingegneria dei Materiali, Strutture e Nanotecnologie

Argomento: "Deposizione e caratterizzazione di film convertitori di ¹⁰B, mediante PLD, per la realizzazione di un detector di neutroni termici in accoppiamento rivelatori al Si."

Marcella Marra-Dottorato in Fisica e Nanoscienze

Argomento: "Rivelatore di neutroni termici mediante film convertitori a base di ¹⁰B accoppiati a scintillatori a base di polisilossano"

PEOPLE

INFN-Sezione di Lecce.

Gianluca QUARTA-PI Anna Paola CARICATO Lucio CALCAGNILE Maurizio MARTINO Antonio SERRA Daniele MANNO Massimo Corrado Lucio Maruccio

INFN-TIFPA-Trento

Alberto QUARANTA (Responsabile)

INFN-LNS (Dot. CSNV)

Paolo FINOCCHIARO

PEOPLE

INFN-LECCE					
Name	Position	Role	FTE		
Gianluca QUARTA	Associate Professor	Principal INvestigator	0.5		
Lucio CALCAGNILE	Full Professor		0.3		
A.Paola CARICATO	Associate Professor		0.1		
Daniela MANNO	Associate Professor		0.3		
Maurizio MARTINO	Associate Professor		0.3		
Antonio SERRA	Associate Professor		0.3		
Lucio MARUCCIO	Technician		-		
Massimo CORRADO	Technician		-		
TOTAL			1.8		

TOTAL:

TIFPA-INFN-TRENTO				
Name	Position	Role	FTE	
Alberto QUARANTA	Full Professor	Unit responsible	0.4	
Davide BRUNELLI	Associate Professor		0.2	
Matteo FAVARO	Dottorando		0.4	
Artem	Dottorando		0.3	
ARKHANGELSKIY				
TOTAL				
LNS-INFN-CATANIA				
Name	Position	Role	FTE	
Paolo FINOCCHIARO	Dirigente tecnologo	Unit responsible	0.1	
	TOTAL 0.1			

3.1 FTE

INFN-LECCE					
Item	Cost	l year	ll Year		
	Detector (Si Detector)	3.5 k€	-		
naroware	Detector electronics (Power supply, Preamp)	3.5 k€	-		
	Total	7.0 k€	-		
	He/Ne/Kr/F pure gas bottles for laser	8 k€	2 k€		
	SEM/TEM/XRD/RAMAN (liquid nitrogen, consumables)	2 k€	2 k€		
Consumables	Tandem consumable (targets, gases, pure materials)	3 k€	2 k€		
	Pure materials for PLD (isotopically enriched materials, substrates)	5 k€	2 k€		
	Scintillators, Fibers, supports	1 k€	1 k€		
	Total	19 k€	9 k€		
Travel expenses2 pers. x 2 weeks (Catania)2 pers x 2 weeks (Trento)		5.0 k€	5.0 k€		
	Total		5 k€		
	TOTAL	31 k€	14 k€		

TLNS-INFN-CATANIA					
ltem Cost		l year	ll Year		
Hardware	-	-	-		
	Total	-	-		
ConsumablesSubstrates, electonic components, glues, conductive glues, detector housing		1.0	1.0		
	Total	1.0	1.0		
Travel expenses	1 pers. x 1 weeks (Lecce) 1 pers x 1 weeks (Trento)	1.5 k€	1.5 k€		
Total		1.5 k€	1.5 k€		
	TOTAL	2.5 k€	2.5 k€		

TIFPA-INFN-TRENTO				
ltem	Item Cost		II Year	
Hardware	vare		-	
	Total	k€	k€	
Consumables	Consumables Consu		5.0 k€	
	Total	8.0 k€	5.0 k€	
Travel expenses	2 pers. x 2 weeks (Catania) 2 pers x 2 weeks (Lecce)	4.0 k€	4.0 k€	
	Total		4.0 k€	
	9.0 k€			

BUDGET: SUMMARY

Unit	YEAR	Hardware	Consumables	Travel expenses (k €)	
	I	7.0	19.0	5.0	
LECCE	Ш	-	9.0	5.0	
	Total	7.0	28.0	10.0	45.0
	Ι	-	8.0	4.0	
TRENTO	П	-	5.0	4.0	
	Total	-	13.0	8.0	21.0
	I	-	1.0	1.5	
CATANIA	Ш	-	1.0	1.5	
	Total	-	2.0	3.0	5.0
		7.0	38.0	17.0	71.0

Thank you for your attention!

BOLAS-NEXT

gianluca.quarta@unisalento.it