

Introduction and jet types

- Jet substructure and tagging is increasingly used throughout the ATLAS physics program
 - Includes *b*-tagging (typically R = 0.4 jets) and boosted decay tagging (typically R = 1.0 jets)
- This talk will cover both, with an emphasis on boosted decay substructure and tagging

Inputs to jet reconstruction

- The vast majority of jets in ATLAS are built using the anti- k_t algorithm, but inputs differ
- Traditionally, jets have been built from topo-clusters: calorimeter 4-vector
 - Typically R = 0.4 jets use EM topo-clusters, while R = 1.0 jets use LC topo-clusters
- Increasing move for R = 0.4 jets toward particle flow objects: calorimeter+track 4-vector
 - Similar or improved performance \sim everywhere, especially useful at low p_{T}
- Sometimes R = 1.0 jets use Track-CaloClusters: calorimeter energy, track angle
 - Improves W/Z tagging performance at high $p_{\rm T}$, for some trade-offs

Jet calibration

R = 0.4 jet energy scale and resolution

- In situ JES combination reaches the level of 1% precision over large range of $p_{\rm T}$
 - PFlow and topo-cluster jets have very comparable JES uncertainties
 - Uncertainties stable at low $p_{\rm T}$ compared to 8 TeV, despite much higher pileup see backup
- PFlow significantly improves the low p_T JER and its uncertainties vs topo-clusters
 - Resolution uncertainties are now typically below 1% absolute (5-15% relative see backup)

b-tagging of PFlow jets

Recent result (April) Both: FTAG-2020-001

- We have just seen that PFlow jets can improve upon topo-cluster jets
 - It is thus important to also consider potential *b*-tagging implications
- To first order, b-tagging is independent of the exact jet definition
 - Inputs depend primarily on the tracks near the jet, not the jet itself
- $\bullet\,$ Still important to derive new tagging scale factors to account for data/MC agreement

5 / 40

Heavy flavour tagging

MC to MC *b*-tagging scale factors

Recent result (May) 🖗 Both: PUB-2020-009

- Correct for differences between generators with MC-to-MC scale factors
 - Differences can be quite large, theory inputs have a significant impact
- Precise calculations/predictions are crucial to continue improving tagger discrimination
 - Especially true for parton shower, fragmentation+hadronization, and decays

Heavy flavour tagging

Deep Impact Parameter Sets (DIPS)

- Run 1 and Run 2: ATLAS used a 3D impact parameter (IP) likelihood
 - IP3D was a key input to *b*-tagging
- In 2017, ATLAS studied an RNN for impact parameter (IP) tagging
 - RNN requires defining an ordering
 - Sequential operation, not parallelizable
- Now studied a Deep IP Set (DIPS)
 - Permutation invariant, parallelizable
 - Faster to train and evaluate!
- However, what about performance?

DIPS *b*-tagging performance

Recent result (May) Both: PUB-2020-014

- With the same inputs, DIPS already matched or exceeded the performance of RNNIP
- DIPS input optimization led to significant further gains
 - $\bullet~$ Up to 50% gain from loose track selection, up to 100% with additional IP inputs

Steven Schramm (Université de Genève)

Performance of jet reconstruction and tagging in ATLAS

July 23, 2020 8 / 40

Boosted hadronic decays

- Hadronic decays of massive particles can come from many sources
 - Main examples: $W \to qq', \ Z \to q\bar{q}, \ H \to b\bar{b}, \ top \to bW \to bqq'$
- For high p_{T} parent particles, the decay products are collimated and fall into a single jet
 - Basic idea of tagging: look at the jet mass and number of decay product axes

Steven Schramm (Université de Genève) Performance of jet reconstruction and tagging in ATLAS

Hbb tagging

- Let's start with a $H \rightarrow bb$ tagger: most important aspect is double-b-tagging
 - Identifies that there are two decay axes, and that they both are compatible with *b*-quarks
- Using R = 0.4 jets won't work: doesn't contain full H decay, instead use R = 1.0
 - Then geometrically match smaller jets to the R = 1.0 jet and *b*-tag those small jets
 - Even R = 0.2 can be too large, instead use Variable-Radius (VR) track-jets: R shrinks vs p_T

Variable-radius track-jet b-tagging

Both: FTAG-2019-006

- VR track-jet *b*-tagging is a key component to the boosted hadronic physics program
 - Dedicated VR track-jet optimization improved b-tag performance by roughly a factor of 2
 - Additional input variables can extend this even further for high b-tagging efficiency

Heavy flavour decays

Hbb tagging performance

New @ BOOST2020 Both: PUB-2020-019

- The dedicated VR track-jet optimization is directly beneficial for $H \rightarrow bb$ tagging
 - Substantial improvements for double-tagging Higgs jets using optimized vs old b-taggers
- Even more significant improvements are possible with a dedicated $X \rightarrow bb$ tagger
 - Fully-connected DNN taking the DL1r scores $(\mathcal{P}_l, \mathcal{P}_c, \mathcal{P}_b)$ for three associated VR track-jets
 - Light-jet rejection improves at high $p_{\rm T}$ (shown), top-jet rejection mostly $p_{\rm T}$ -stable [backup]

Heavy flavour decays

Hbb tagging and mass sculpting

New @ BOOST2020 Plot: PUB-2020-019

- Ideally want the $H \rightarrow bb$ tagger (D_{Xbb}) not to shape Higgs or background mass
 - D_{Xbb} is not given any substructure variables (other than the three subjets)
 - This limits the mass sculpting
- Important for $H \rightarrow bb$ measurements in the boosted regime
 - Good identification performance with manageable mass sculpting!
 - Sculpting consistent with asking for matched VR jets (typically done)

Large-radius jet mass

- H
 ightarrow bb tagging is a rare case where the jet mass is less important for tagging
 - Still important to identify as a Higgs (reduce $Z \rightarrow bb$ or $g \rightarrow bb$), but less than other cases
- Use "combined mass" to improve high p_{T} performance: $m_{jet}^{comb} = A \cdot m_{jet}^{calo} + B \cdot m_{jet}^{TA}$ $m_{jet}^{TA} = m_{jet}^{track} \cdot \frac{p_{T}^{calo}}{p_{track}^{track}}$, A and B are resolution weights derived in QCD dijet MC samples
- ATLAS calibrates the R = 1.0 jet mass scale (JMS) after applying the JES

New @ BOOST2020

Plot: CONF-2020-022

Forward folding: jet mass scale and resolution

- ${\ensuremath{\, \bullet }}$ Use visible mass peaks to precisely calibrate mass differences between data and MC
 - Traditionally top quarks and W bosons from $t\bar{t}$ events, now also V from V + jets events
- Use MC templates in Forward Folding: $m^{\text{fold}} = s \cdot m^{\text{reco}} + (m^{\text{reco}} m^{\text{truth}} \cdot \mathcal{R}_m)(r-s)$
 - s(r) is the JMS (JMR) difference between data and MC, \mathcal{R}_m is the MC mass response

JMS and JMR results

New @ BOOST2020 🔇

Plot: CONF-2020-022 🎵 EXPERI

- Extracted the in situ JMS and JMR (after applying the in situ JES) using forward folding
 - Left: W and top jets from $t\bar{t}$ events, for calorimeter + track-assisted + reclustered masses
 - Calorimeter mass: from jet constituents (topo-clusters); track-assisted mass: $m_{jet}^{track} \cdot \frac{\rho_T^{calo}}{\sigma_T^{track}}$
 - Reclustered mass: build R = 1.0 jets using R = 0.4 jets as input, take the mass of that jet
 - Right: Calorimeter mass for W jets $(t\bar{t})$, top jets $(t\bar{t})$, and W/Z jets (V + jets)
- \bullet JMS is consistent with 1 (within ${\sim}1\%$ uncertainty), JMR sometimes underestimated

JMS and JMR dependence on jet structure

- ${\ensuremath{\, \bullet }}$ Also used Forward Folding to study the dependence of the JMS and JMR on substructure
- Reclustered jets: R = 1.0 jets built using inputs of fully-calibrated R = 0.4 jets
 - Count the number of R = 0.4 jets in the reclustered jet
 - Compare different R = 0.4 jet multiplicities for a given particle interpretation
- ullet No significant differences observed \implies JMS and JMR appear stable vs substructure

W/Z/top tagging

PERF-2015-03

PERF-2015-03

l eft[.]

Mid: Going beyond the jet mass for W/Z/top decays Right: JETM-2018-03 A EXPERIM

- As mentioned earlier, to first order tagging is a simple procedure
 - Cut on the jet mass and other substructure variable(s) correlated to the number of decay axes
 - Common variables: $D_2^{(\beta=1)}$ for two-body decays (W/Z), τ_{32}^{wta} for three-body decays (top)
- Such simple two-variable cut-based taggers provide a strong reference point
 - Typical for early run 2, but we have moved to more powerful combinations

W/Z/top tagging

W and top tagger performance in MC

Both: PUB-2020-017

New @ BOOST2020

- W/Z-taggers are optimized simultaneously for three-variables: mass, $D_2^{(eta=1)}$, and $N_{\sf trk}$
 - $N_{\rm trk}$ can provide a large gain, at the cost of some modelling ightarrow fix with scale factors
- Top taggers use 13 jet-level variables in a fully-connected Deep Neural Network (DNN)
 - Significant benefits when using a DNN as compared to a cut-based tagger
 - Note: "inclusive" top also shown, only requires truth top quark match (more in backup)

W tagger selections in data

- Studied data/MC agreement for W bosons in $t\bar{t}$ events, at each stage of the tagger
 - Cut values evolve with $p_{\rm T}$, shown here for cuts corresponding to the lowest $p_{\rm T}$ range
- $\bullet\,$ Some significant data/MC differences, but all within the modelling uncertainties
 - N_{trk} actually very well modelled inclusively, disagreement arises after cuts [backup]
- \bullet Account for these data/MC differences using tagging efficiency scale factors

Steven Schramm (Université de Genève)

Extracting signal efficiency scale factors

New @ BOOST2020 Both: PUB-2020-017

- Define three templates from the shapes in MC, but allow their normalization to float
 - Fit normalizations to pass and fail distributions to extract number of signal events in data

Steven Schramm (Université de Genève)

Signal efficiency scale factors and extrapolation

- Data and simulation generally agree within uncertainties, even for complex taggers
 - Contained DNN top tagger $\epsilon_{sig}^{data}/\epsilon_{sig}^{MC} \approx 1$; 3-variable W-tagger $\epsilon_{sig}^{data}/\epsilon_{sig}^{MC} \approx 0.8$ [backup]

New @ BOOST2020

22 / 40

Both: PUB-2020-017

- Then extrapolate the scale factors to higher $p_{\rm T}$ using MC variations
 - Variations: Geant4 physics lists, ATLAS detector geometry model, alternative generators

Background efficiency scale factors

 New @ BOOST2020

 All: PUB-2020-017

- $\epsilon_{data}^{background} = \frac{N_{background}^{tagged}}{N_{background}^{total}}, \quad \epsilon_{MC}^{background} = \frac{N_{background}^{tagged}}{N_{background}^{total}}, \quad scale \ factor = \epsilon_{data}^{background} / \epsilon_{MC}^{background}$
- \bullet Study performance of taggers in background samples: QCD multijets and $\gamma+{\rm jet}$
 - Study modelling differences between gluon-enriched (QCD) and light-quark-enriched (γ +jet)
- Left two plots are for a top-tagger, right two plots are for a W-tagger

TrackCaloCluster jets

Both: HDBS-2018-31

- Track-CaloClusters (TCCs) split and assign cluster energy to matching track(s)
 - Degrades low $p_{\rm T}$ mass performance, but significantly improves $D_2^{(\beta=1)}$
- TCC jets support powerful taggers at high p_{T} ; topo-clusters are better at low p_{T}
 - Some high- $p_{\rm T}$ analyses have thus used TCC jet taggers to increase sensitivity

Scale factors for TCC jets

- $\, \bullet \,$ No in situ JES calibration for TCC jets $\, \Longrightarrow \,$ mass peak offset between data and MC
 - Differences are corrected for with scale factors and are within uncertainties
 - Simultaneously extract multi-region scale factors (4×): [pass, fail] × [mass, $D_2^{(\beta=1)}$]

The importance of jet inputs

- As mentioned, R = 0.4 jets are increasingly using Particle Flow (PFlow)
 - These work very well for the lower p_{T} regime, also improves low- p_{T} tagging of large-R jets
- However, TCC jets dominate at high p_{T} (relevance continues to grow at higher p_{T})
 - Two different algorithms for two different domains: let's combine them!

Steven Schramm (Université de Genève)

New @ BOOST2020

- This is the same plot as the previous slide, but with the UFO lines added
 - Equivalent to PFlow at low p_{T} , superior to TCC at high p_{T} (more TCC-like at very high p_{T})
- Significant improvements from using UFOs, without even re-optimizing the jet definition!
- This and next slides are simple taggers: 68% mass window + $[D_2^{(\beta=1)}]$ or au_{32}^{wta} cut

Surveying jet definitions and pileup stability

29 / 40

- UFOs already work very well, but we can still improve by surveying jet definitions
- Jet definitions have come a long way since ATLAS settled on the trimming algorithm
 - New groomers such as Soft Drop, Recursive Soft Drop, and Bottom-Up Soft Drop
 - New pileup mitigation techniques such as Constituent Subtraction and SoftKiller
- Consider pileup stability: clear balance between groomers and pileup mitigation techniques
 - Left: stability of the W mass peak; right: stability of the W-tagging efficiency (50% tagger)

New large-radius jet definitions

W-tagging performance, $1 < p_{\mathsf{T}} / \mathsf{TeV} < 1.5$

Plot: CONF-2020-021

New @ BOOST2020

30 / 40

- The below plot shows the QCD multijet rejection for a 50% W-tagger
- Several other mega-plots for different metrics can be found in the backup

Finalists: jet mass resolution

Both: CONF-2020-021

- Combining information from the mega-plots like the last slide, we can identify "finalists"
 - A subset of four new definitions that are candidates for an optimal new ATLAS jet definition
 - $\bullet\,$ All use UFO inputs and CS+SK pileup mitigation, only the grooming algorithm varies
- Compare finalists to the currently used options: trimming with topo-clusters or TCCs
 - Able to match or improve the current jet mass resolution everywhere

Finalists: tagging performance

New @ BOOST2020 Both: CONF-2020-021

- Next, consider the W- and top-tagging performance of the new jet definitions
 - Once again, large improvements are possible everywhere
 - Soft Drop seems to work very well for top, only small losses vs other options for W-tagging

New large-radius jet definitions

Finalists: tagging performance, in data

New @ BOOST2020

- $\bullet\,$ It is important to understand if the tagging improvements are real
 - Applied to an inclusive jet data sample and compared to Pythia8 QCD dijet MC
- Results generally match the ordering of the MC tagging performance studies
 - $\bullet\,$ Additionally, reasonable data/MC agreement $\sim\!\!everywhere$ (only statistical uncertainties)

New large-radius jet definitions

Finalists: jet energy resolution

- UFO, CS+SK, Soft Drop seems to be working excellent in all of the metrics
 - However, there is one downside to UFO
- UFO uses "EM-scale" topo-clusters
 - Degraded JER compared to LC clusters
- All of the improvements make the new definition very useful for many analyses
 - However, still can be improved...
- An LC UFO variant could improve JER
 - Could also be mitigated via dedicated calibration (similar to R = 0.4 GSC)

New @ BOOST2020

Plot: CONF-2020-021

Topo-cluster calibrations

Left: PERF-2014-07 Right: PERF-2011-04

- ATLAS R = 1.0 jets have used topo-clusters at the Local Cell Weighting (LCW) scale
 - 1. Derive a probability of being a cluster from an electromagnetic or hadronic shower
 - 2. Apply a calibration weighted by that probability: LCW $\approx \mathcal{C}_{\text{EM}} \cdot \mathcal{P}_{\text{EM}} + \mathcal{C}_{\text{had}} \cdot (1 \mathcal{P}_{\text{EM}})$
- This historically improves the JER by better representing showers within the jet
 - Let's try improving this correction using machine learning
 - See also Dewen's poster/talk later today for more details

Steven Schramm (Université de Genève)

Using machine learning for cluster calibration

- New @ BOOST2020 Both: PUB-2020-018
- LCW performs two tasks: classification (EM or hadronic) and calibration
- Do the same with machine learning and the cluster energy in each layer of the calorimeter
 - Tried DNNs, CNNs, and DenseNets for both tasks [network architectures in backup]
- Below is single-pion MC of the ATLAS EM barrel calorimeter layers
 - $\bullet\,$ Shows the difference between the average shower energy distributions: π^0 π^+
 - Narrow EM showers of $\pi^0 \to \gamma \gamma$ are visible compared to the wider showers of hadronic π^+

Steven Schramm (Université de Genève)
Cluster identification performance

New @ BOOST2020 Both: PUB-2020-018

- $\bullet\,$ The ML techniques all do an excellent job of distinguishing π^0 from π^+ showers
 - Dramatic improvements are possible compared to the LCW classification performance
 - Overall, CNN seems to give the best performance for classifying EM vs hadronic showers
- Does well across p_{T} even though the networks were never actually given the cluster energy

Regression performance, charged pions

New @ BOOST2020 Both: PUB-2020-018

- Below is the cluster energy response $\mathcal{R} = E_{\text{cluster}}^{\text{reco}} / E_{\text{cluster}}^{\text{truth}}$ for charged pions
 - See the backup for plots showing performance for π^0 and a pion mixture $(\frac{1}{3}\pi^+, \frac{1}{3}\pi^-, \frac{1}{3}\pi^0)$
- \bullet Raw "EM" scale under-estimates $\mathcal R;$ LCW over-estimates $\mathcal R$ at low-energy
 - In contrast, a DNN regression does an excellent job nearly everywhere

Cluster response and resolution, pion mixture

- Compare the EM, LCW, and CNN(classifier)+DNN(regression) performance
 - ${\scriptstyle \bullet }$ The CNN+DNN combination has the best scale and similar/better resolution ${\scriptstyle \sim everywhere}$

New @ BOOST2020

Both: PUB-2020-018

• Very promising method to improve the topo-cluster calibration in the future

Summary

link

[1, 2] [link]

[link]

[link] [1, 2]

link

link

- There are lots of interesting new jet reconstruction and tagging developments in ATLAS!
 - Improved JES and JER determination for R = 0.4 jets, with a full PFlow calibration
 - Newly optimized *b*-taggers for PFlow jets and with MC-to-MC scale factors
 - Improved *b*-tagging identification using deep impact parameter sets
 - Dedicated $X \rightarrow bb$ taggers with enhanced Higgs-jet tagging capabilities
 - R = 1.0 JMS and JMR measurements, including V + jets events and reclustered jets
 - $\bullet\,$ Improved W/Z/top taggers and scale factors, for both topo-cluster and TCC jets
 - A survey of R = 1.0 jet definitions, including a new UFO input type
 - Improved topo-cluster calibrations using machine learning techniques
- This is only a brief look through all of these new results
 - Please look at all of the associated notes/papers using the above links!
 - A compiled list of new ATLAS results for the BOOST audience can be found here

Backup Material

Simulation-based jet calibration

Jet energy response

- The jet energy is only partially observed in the detector
 - Neutral particles: only measured by calorimeter, and only the energy in active layers
 - Charged particles: measured by calorimeter (in active layers) and tracker (full energy)
- Use the MC response = $\langle x_{iet}^{reco}/x_{iet}^{truth} \rangle$ of key variables to correct for unmeasured energy
 - PFlow measures the full scale of charged particles \implies reduces required calibration factors

42 / 40

Accounting for differences between data and MC

- The calibration was derived using MC
 - However, we apply it also to data
 - We need to account for potential data/MC differences after calibration
- Study data/MC agreement in situ
 - Direct p_T balance: probe jet balancing a well-understood reference object
 - Dijet p_T balance: forward probe jet balancing a different η reference jet
 - Dijet p_T asymmetry: unbalanced probe and reference jets quantify resolution
- Use to evaluate data/MC agreement
 - $\bullet~$ Correct the data to match the MC

 $|\eta_{\rm iet}^{\rm probe}| \le 0.8$ Direct $p_{\rm T}$ balance techniques $Z \rightarrow ee \ Z \rightarrow \mu\mu$ Multi-jet balance (MIB) $|\eta_{\rm iet}^{\rm probe}| > 0.8$ Dijet p_T balance techniques

Dijet eta-intercalibration for scale Dijet asymmetry for resolution

JES and its uncertainties

Both: JETM-2018-05

New @ BOOST2020

- In situ JES combination is reaching the level of 1% precision over large range of $p_{\rm T}$
 - Additional uncertainties (flavour, etc) increase this as shown in right plot
 - PFlow and topo-cluster jets have very comparable JES uncertainties
- Uncertainties stable at low p_T compared to 8 TeV, despite much higher pileup [backup]

JES combination results

45 / 40

JES combination weights and χ^2

Backup

Comparing JES uncertainties at 8 and 13 TeV

• Note different y-axis scale: uncertainties are very similar despite challenging conditions!

EYDEDIM

PERF-2014-02

New @ BOOST2020

Right: JETM-2018-05

I eft[.]

JER extraction

Steven Schramm (Université de Genève) Performance of jet reconstruction and tagging in ATLAS 1000

 p_{τ}^{jet} [GeV]

JER and its uncertainties

New @ BOOST2020 Both: JETM-2018-05

- JER is evaluated combining dijet asymmetry measurements with a noise term constraint
 - Constraint comes from random cones in zero-bias data to get ambient noise in a given area
- PFlow significantly improves the low p_T JER and its uncertainties vs topo-clusters
 - Resolution uncertainties are now typically below 1% absolute (5-15% relative see backup)

Steven Schramm (Université de Genève)

JER combination

Backup

51 / 40

Labels, associations, and sizes for *b*-tagging

• Track association is exclusive: matched to closest jet in ΔR if multiple candidates

Steven Schramm (Université de Genève) Performance of jet reconstruction and tagging in ATLAS

Plot: D. Guest

Hbb tagging discriminants

Hbb tagging vs 2x b-tag, light jets

Hbb tagging vs 2x b-tag, top jets

Backup

Signal jet definitions: W, Z, and top

New @ BOOST2020 Both: PUB-2020-017

- We need to define our target when designing a tagger: the objective we want to identify
 - W/Z: jet is matched to a truth W/Z boson, $m_{truth}^{trimmed}$ window, no *b*-hadrons (for W)
 - Top: jet is matched to a truth top quark, $m_{\rm truth}^{\rm trimmed} > 140\,{
 m GeV}$, at least one *b*-hadron
- Referred to as "containment": the truth jet includes most of the truth particles
 - Changed from previous parton-based definition to reduce modelling dependence

Signal jet definitions "purity"

Backup

W-tagger optimization

New @ BOOST2020 Both: PUB-2020-017

• $N_{\rm trk}$ cut is fixed to 26 (does not evolve with $p_{\rm T}$, found to be optimal everywhere)

W tagger selections and $N_{\rm trk}$

Top signal efficiency scale factors

e) Performance of jet reconstruction and tagging in ATLAS

Steven Schramm (Université de Genève)

W signal efficiency scale factors

Steven Schramm (Université de Genève) Performance of jet reconstruction and tagging in ATLAS

W-tagging performance, $300 < p_T/GeV < 500$ New @ BOOST2020 Plot: CONF-2020-021

E		ATLAS Si √ S = 13 TeV,	imulation $\Pr W \rightarrow q\overline{q}$	eliminary	Anti- $\kappa_1 R$ =1.0 jets, no jet calibrations applied 300 GeV $\leq p_1^{true} < 500$ GeV, $ \eta^{true} < 1.2$							
	$z_{\rm cut} = 0.1, \beta = 0.0$	25	38	37	46	46	25	32	37	46		
o	$z_{\rm cut} = 0.1, \beta = 1.0$	19	_ 38	37	45	47	24	31	38	46		60
Alg	$z_{\rm cut} = 0.05, \beta = 0.0, N = \infty$	12	37	39	48	49	18	33	38	47		
ing /	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	30	37	40	40	39	29	32	40	41		
	$z_{\rm cut}$ = 0.05, β = 1.0, $N = \infty$	10	31	27	47	50	13	29	27	46	- 5	50
Recursive SD	$z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	19	40	44	50	49	25	33	44	49		30
õ	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	12	36	36	47	49	17	31	36	48		
Ū	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	27	39	40	39	39	29	32	40	41		
et	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	10	31	26	45	48	13	28	26	45		40
7	$z_{\rm cut} = 0.1, \beta = 1.0, N = 3$	18	39	_ 42 _	48	48	24	33	44	_ 48		
	$z_{\rm cut} = 0.05, \beta = 0.0$	12	36	36	48	48	17	33	37	48		
Bottom-up SD	$z_{\rm cut} = 0.1, \beta = 0.0$	27	38	41	42	42	30	32	42	41		30
	$z_{\rm cut} = 0.05, \beta = 1.0$	9	31	27	46	50	13	29	27	46		
Develop	$Z_{\rm cut} = 0.1, \beta = 1.0$	17	39	_ 44 _	_49	49	25	34	44	50		
Pruning	$R_{\rm cut} = 0.15, Z_{\rm cut} = 0.25$	35	36	_ 42	41	41	29	_ 30 _	41	40		20
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	29	30	32	33	32	26	28	33	33		
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	25	26	30	30	30	23	26	30	30		
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* 36	36	41	40	41	28	30	42	42	_	10
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	32	34	38	38	37	27	31	38	38		
		Unmodified	CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK		
		LC		PFlow		тс	C	UF	Ō			
		Jet Constituent Type										

Performance of jet reconstruction and tagging in ATLAS

Top-tagging performance, $0.5 < \textit{p}_{\rm T}/{\rm TeV} < 1$

Plot: CONF-2020-021

New @ BOOST2020

E		ATLAS S √ S = 13 TeV,	Simulation Pr t → qqdb	eliminary	Anti- $k_t R$ =1.0 jets, no jet calibrations applied 500 GeV $\leq p_t^{\text{true}} < 1000$ GeV, $ \eta^{\text{true}} < 1.2$							
Soft Drop	$z_{\rm cut} = 0.1, \beta = 0.0$	53	50	68	74	68	51	44	76	78		
ō	$Z_{\rm cut} = 0.1, \beta = 1.0$	51	54	73	76	70	56	_ 53 _	76	83		80
6 A G	$z_{\rm cut} = 0.05, \beta = 0.0, N = \infty$	27	37	45	47	46	38	37	54	57		
D D Recursive SD	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	31	30	39	36	36	32	29	49	49		70
	$z_{\rm cut} = 0.05, \beta = 1.0, N = \infty$	28	42	51	57	55	38	42	55	62		
	$z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	39	47	60	65	62	47	45	67	73	e	60
<u>ĕ</u>	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	31	39	49	52	51	38	39	53	59		00
פ	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	28	30	42	41	39	32	32	51	52		EO
L L L L L L L L L L L L L L L L L L L	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	31	44	52	58	56	39	42	56	61		50
7	$z_{\rm cut} = 0.1, \beta = 1.0, N = 3$	40	_ 47	61	67	63	47	_ 45 _	65	71		
Bottom-up SD	$z_{\rm cut} = 0.05, \beta = 0.0$	26	36	45	48	46	36	38	54	56		40
	$z_{\rm cut} = 0.1, \beta = 0.0$	30	32	40	39	38	33	30	49	50		
	$z_{\rm cut} = 0.05, \beta = 1.0$	28	42	52	57	55	38	42	55	61		30
Develop	$Z_{\rm cut} = 0.1, \beta = 1.0$	39	48	_ 60 _	64	62	47	_ 47 _	65	72		
Pruning	$R_{\rm cut} = 0.15, Z_{\rm cut} = 0.25$	25	21	30	_29	28	17	_ 15 _	31	29		20
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	24	24	36	37	35	33	33	46	46		
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	14	17	25	27	27	17	20	31	32		10
-	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* 41	40	52	51	51	39	38	57	60		
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	37	36	52	54	50	31	33	56	56		0
		Unmodified	CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK		Ŭ
		LC	С Торо		PFlow		TC	С	UF	O		
								Jet	Constitue	ent Type		

Top-tagging performance, $1 < p_T/\text{TeV} < 1.5$ New @ BOOST2020 Plot: CONF-2020-021

E		ATLAS √ S = 13 Te\	Simulation Pr /, t → qqb	eliminary	Anti- $k_{\tau} R$ =1.0 jets, no jet calibrations applied 1000 GeV $\leq \rho_{\tau}^{puo} < 1500$ GeV, $ \eta^{true} < 1.2$								20
E Soft Drop	$z_{\rm cut} = 0.1, \beta = 0.0$	17	18	20	20	20	18	19	26	25			eD
o	$z_{\rm cut} = 0.1, \beta = 1.0$	25	25	30	30	30	38	37	47	47	_	45	ö
Alg	$z_{\rm cut} = 0.05, \beta = 0.0, N = \infty$	16	17	19	19	19	27	27	32	32			eff
6	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	14	13	14	14	14	17	17	21	21	I —	40	2
. <u> </u>	$z_{\rm cut} = 0.05, \beta = 1.0, N = \infty$	14	20	23	24	23	29	31	33	35			õ
Recursive SD	$z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	23	23	27	28	27	34	34	43	43		35	2 II
õ	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	18	19	22	22	21	30	30	35	35			
Ū	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	14	13	15	14	14	18	18	21	20	I —	30	0
et	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	15	20	23	24	24	30	32	35	36			ക്
	$z_{\rm cut} = 0.1, \beta = 1.0, N = 3$	23	24	_ 28	_27	28	36	35	44	43		25	9
	$z_{\rm cut} = 0.05, \beta = 0.0$	16	17	19	19	19	28	27	32	32	1		ē
Bottom-up SD	$z_{\rm cut} = 0.1, \beta = 0.0$	14	14	14	14	14	17	17	22	21		20	ğ
	$z_{\rm cut} = 0.05, \beta = 1.0$	14	20	22	23	23	29	31	33	35			÷
Device	$z_{\rm cut} = 0.1, \beta = 1.0$	23	23	_ 28	_27	27	34	34	43	42		15	Ē
Pruning	$R_{cut} = 0.15, Z_{cut} = 0.25$	14	14	15	14	15	13	14	13	14	1	10	Ĕ
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	14	14	18	18	18	25	27	31	32		110	õ
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	12	12	14	14	15	13	14	18	19		5	ĝ
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* 20	20	25	25	25	30	31	39	38		5	ģ
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	17	18	21	20	21	19	20	27	26		0	മ്
		Unmodifie	d CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK		0	
		L	С Торо		PFlow		TC	С	UF	0			
		Jet Constituent Type											

W mass peak pileup dependence

E		ATLAS S ∎S = 13 TeV,	Simulation Pr $W \rightarrow q\overline{q}$	eliminary	Anti- $k_t R$ =1.0 jets, no jet calibrations applied 300 GeV $\leq \rho_1^{true} < 500$ GeV, $ \eta^{true} < 1.2$								[
Soft Drop	$z_{\rm cut} = 0.1, \beta = 0.0$	0.74	0.02	0.24	0.06	0.12	-0.03	-0.27	0.23	0.06			è	
o	$z_{\rm cut} = 0.1, \beta = 1.0$	1.99	0.03	_0.29_	0.06	0.12	0.18	-0.27	0.28	0.06	_	0.4	Q	
Alg	$z_{\rm cut} = 0.05, \ \beta = 0.0, \ N = \infty$	2.86	0.06	0.35	0.05	0.09	0.62	-0.22	0.33	0.04			>	
6	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	0.37	0.01	0.08	0.02	0.05	-0.09	-0.20	0.08	0.02		0.3	Z	
.Ē	$z_{\rm cut} = 0.05, \beta = 1.0, N = \infty$	3.35	0.16	0.95	0.11	0.14	0.86	-0.24	0.92	0.11			0	
E Recursive SD	$z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	1.65	0.05	0.25	0.06	0.10	0.13	-0.25	0.24	0.05		0.2	\geq	
õ	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	3.18	0.06	0.42	0.06	0.10	0.78	-0.23	0.39	0.05			8	
Ū	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	0.47	0.01	0.10	0.03	0.07	-0.09	-0.22	0.09	0.02		0.1	3	
et	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	3.41	0.16	0.99	0.11	0.14	0.91	-0.24	0.97	0.11			\sim	
7	$z_{\rm cut} = 0.1, \beta = 1.0, N = 3$	1.64	0.04	0.26	0.06	0.10	0.15	-0.25	0.26	0.05	_	0	Ś	
	$z_{\rm cut} = 0.05, \beta = 0.0$	2.97	0.07	0.47	0.06	0.09	0.71	-0.22	0.43	0.05				
Bottom-up SD	$z_{\rm cut} = 0.1, \beta = 0.0$	0.46	0.02	0.10	0.03	0.05	-0.07	-0.20	0.09	0.02	_	-0.1		
	$z_{\rm cut} = 0.05, \beta = 1.0$	3.37	0.17	0.96	0.11	0.14	0.89	-0.24	0.95	0.11				
Develope	$z_{\rm cut} = 0.1, \beta = 1.0$	1.74	0.04	0.26	0.06	0.10	0.15	-0.25	0.24	0.05		-0.2		
Pruning	$R_{\rm cut} = 0.15, Z_{\rm cut} = 0.25$	0.27	_ 0.00	0.11	0.02	0.04	-0.11	-0.19	0.10	_ 0.01				
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	-0.03	-0.04	-0.01	-0.02	0.00	-0.16	-0.18	0.01	0.00		-0.3		
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	-0.03	-0.05	-0.03	-0.04	-0.03	-0.13	-0.16	-0.01	-0.02				
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* 0.14	-0.01	0.07	0.02	0.06	-0.21	-0.25	0.06	0.02	_	-0.4		
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	0.10	-0.03	0.05	0.01	0.05	-0.20	-0.25	0.05	0.00				
		Unmodified	CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK				
		LC Topo			PFlow TCC			C	UFO					
								Jet Constituent Type						

Performance of jet reconstruction and tagging in ATLAS

W tagging efficiency pileup dependence

E		ATLAS S √ S = 13 TeV,	imulation Pr W → qq	eliminary	Anti- $k_1 R$ =1.0 jets, no jet calibrations applied 300 GeV $\leq p_1^{true} < 500$ GeV, $ \eta^{true} < 1.2$								_
Soft Drop	$z_{\rm cut} = 0.1, \beta = 0.0$	-1.20	-0.27	-0.63	-0.22	-0.32	-0.24	0.35	-0.58	-0.20			%
o	$z_{\rm cut} = 0.1, \beta = 1.0$	-1.64	-0.31	-0.71	-0.23	-0.31	-0.68	0.32	-0.70	-0.20		1.5	~
Alg	$z_{\rm cut} = 0.05, \ \beta = 0.0, \ N = \infty$	-1.34	-0.45	-0.98	-0.24	-0.41	-0.98	0.24	-1.02	-0.22			z
6	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	-1.18	-0.10	-0.38	-0.09	-0.15	0.03	0.24	-0.40	-0.09			0
Ē	$z_{\rm cut} = 0.05, \beta = 1.0, N = \infty$	-0.93	-0.59	-1.53	-0.41	-0.38	-1.27	-0.23	-1.55	-0.40		1) (
Recursive SD	$z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	-1.56	-0.32	-0.76	-0.21	-0.26	-0.71	0.30	-0.78	-0.23			sig
õ	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	-1.40	-0.46	-0.98	-0.23	-0.21	-1.09	0.28	-0.99	-0.23		0.5	3)
Ū	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	-1.19	-0.17	-0.46	-0.14	-0.20	-0.10	0.25	-0.45	-0.12			S
et	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	-0.91	-0.58	-1.52	-0.41	-0.38	-1.26	-0.22	-1.54	-0.41			
	$\underline{z_{\text{cut}}} = 0.1, \beta = 1.0, N = 3$	-1.68	0.35	-0.79	-0.22	0.29	-0.72	0.33	-0.77	0.24	_	0	
	$z_{\rm cut} = 0.05, \beta = 0.0$	-1.38	-0.47	-1.11	-0.24	-0.25	-1.09	0.23	-1.12	-0.25			
Bottom-up SD	$z_{\rm cut} = 0.1, \beta = 0.0$	-1.33	-0.14	-0.47	-0.12	-0.21	-0.04	0.23	-0.45	-0.09		0.5	
	$z_{\rm cut} = 0.05, \beta = 1.0$	-0.85	-0.59	-1.55	-0.42	-0.38	-1.26	-0.20	-1.57	-0.40		-0.5	
Davasiana	$z_{\rm cut} = 0.1, \beta = 1.0$	-1.56	0.35	-0.78	-0.21	-0.26	-0.74	0.30	-0.80	-0.23			
Pruning	$\underline{R}_{cut} = 0.15, \underline{Z}_{cut} = 0.25$	-1.04	_ 0.00	-0.37	-0.04	0.12	0.19	0.31	-0.38	0.05	_	-1	
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	-0.02	0.08	0.01	0.04	0.01	0.18	0.20	-0.07	0.01			
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	-0.01	0.11	0.03	0.09	0.07	0.18	0.22	-0.03	0.03		4.5	
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* -0.40	-0.15	-0.20	-0.05	-0.13	0.30	0.30	-0.09	-0.04		-1.5	
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	-0.23	-0.07	-0.25	-0.05	-0.20	0.29	0.33	-0.21	-0.04			
		Unmodified	CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK			
		LC	Торо		PFlow TCC			C	UFO				
								Jet Constituent Type					

Performance of jet reconstruction and tagging in ATLAS

E		ATLAS S ∎S = 13 TeV	Simulation Pr	eliminary	An 30	Anti- $k_{f} R$ =1.0 jets, no jet calibrations applied 300 GeV $\leq p_{T}^{true} < 500$ GeV, $ \eta^{true} < 1.2$						
Soft Drop	$z_{\rm cut} = 0.1, \ \beta = 0.0$	1.05	1.08	1.02	1.03	1.02	1.09	1.13	1.02	1.03		1.2 I
or	$z_{\rm cut} = 0.1, \beta = 1.0$	1.02	1.09	1.02	1.04	1.03	1.08	1.14	1.02	1.03		
Alg	$\overline{z_{\text{cut}}} = 0.05, \ \beta = 0.0, \ N = \infty$	0.97	1.05	0.98	1.01	1.01	1.01	1.12	0.99	1.01		1.1
6	$z_{\rm cut} = 0.1, \beta = 0.0, N = \infty$	1.00	1.02	0.98	0.99	0.98	1.03	1.07	0.99	1.00		
.Ē	$z_{\rm cut} = 0.05, \beta = 1.0, N = \infty$	0.93	1.10	1.00	1.05	1.05	1.01	1.19	1.00	1.05		1.1
E Recursive	SD $Z_{\rm cut} = 0.1, \beta = 1.0, N = \infty$	1.00	1.07	1.01	1.02	1.02	1.06	1.14	1.00	1.03		l
õ	$z_{\rm cut} = 0.05, \beta = 0.0, N = 3$	0.93	1.08	1.00	1.04	1.03	1.01	1.15	1.00	1.04		4.0
Ū	$z_{\rm cut} = 0.1, \beta = 0.0, N = 3$	1.00	1.05	0.99	1.01	1.00	1.04	1.08	0.99	1.01		1.0
et	$z_{\rm cut} = 0.05, \beta = 1.0, N = 3$	0.93	1.10	1.00	1.05	1.05	1.02	1.19	1.00	1.05		
7	$Z_{\text{cut}} = 0.1, \beta = 1.0, N = 3$	1.00	_ 1.08	_1.01_	1.03	1.02	1.06	1.14	1.00	1.03		1
	$z_{\rm cut} = 0.05, \ \beta = 0.0$	0.94	1.05	0.98	1.02	1.01	1.01	1.12	0.99	1.02		
Bottom-up	SD $Z_{\rm cut} = 0.1, \beta = 0.0$	1.00	1.02	0.98	0.99	0.98	1.03	1.07	0.99	1.00		0 9
	$z_{\rm cut} = 0.05, \beta = 1.0$	0.96	1.10	1.00	1.05	1.05	1.03	1.20	0.99	1.05		0.0
	$Z_{\rm cut} = 0.1, \beta = 1.0$	1.00	_ 1.07	_1.01_	1.03	1.02	1.05	1.14	1.00	1.03		
Pruning	$\overline{R}_{cut} = 0.15, \overline{Z}_{cut} = 0.25$	1.01	1.03	1.00	1.01	1.01	1.03	1.07	0.99	1.00		0.9
	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.1$	1.04	1.04	1.00	1.01	1.00	1.04	1.05	1.00	1.00		
Trimming	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.1$	1.05	1.05	1.01	1.01	1.01	1.03	1.05	1.00	1.00		0.8
0	$f_{\rm cut} = 5\%, R_{\rm sub} = 0.2$	* 1.04	1.06	1.01	1.02	1.01	1.08	1.11	1.01	1.02		
	$f_{\rm cut} = 9\%, R_{\rm sub} = 0.2$	1.04	1.05	1.00	1.01	1.01	1.06	1.08	1.01	1.01		0.8
		Unmodified	CS+SK	Unmodified	CS+SK	PUPPI	Unmodified	CS+SK	Unmodified	CS+SK		0.0
		LC Topo			PFlow TCC			UFO				
								Jet	Constitue	ent Type	l.	

W vs QCD response (topology dependence)

Steven Schramm (Université de Genève)

Performance of jet reconstruction and tagging in ATLAS

1.2 ⊕ c 1.15 g 1.15 g 1.1 ≥ c 1.1 ≥ c 1.1 ≥ c 0.95 0.95

W-tagging performance of finalist definitions

Classification architectures

Regression performance, neutral pions

Regression performance, mixed pions

Regression performance, neutral pions

Regression performance, charged pions

Performance of jet reconstruction and tagging in ATLAS