

10.00

Physics at Muon Collider

Higgs Physics at a Muon Collider

O(1M) Higgs produced in the low energy (<10 TeV scenario)

Clean events as in e+e- colliders with high collision energy as in hadron colliders The muon collider is the dream machine for Higgs physics measurements

•

Higgs boson couplings: from present to future

• One of the goals of future colliders: precise measurement of Higgs couplings with SM particles $-g_{3H} = g_{4H} - g_$

$$\mathcal{L} = -g_{Hf\bar{f}} f\bar{f}H + \frac{g_{3H}}{6}H^3 + \frac{g_{4H}}{24}H^4 + \delta_V V_\mu V^\mu \left(g_{HVV}H + \frac{g_{HHVV}}{2}H^2\right)$$

$$g_{Hf\bar{f}} = \frac{m_f}{v}$$
, $g_{HVV} = \frac{2m_V^2}{v}$, $g_{HHVV} = \frac{2m_V^2}{v^2}$, $g_{3H} = \frac{3m_H^2}{v}$, $g_{4H} = \frac{3m_H^2}{v^2}$

 \rightarrow push the knowledge of the couplings below the 1% precision

 \rightarrow access un-explored couplings

 \rightarrow use the Higgs boson as a tool to probe beyond standard model scenarios!

The	futu	ıre												
kappa-0	HL-LHC	LHeC	HE	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/eh/hh
			S 2	S2′	250	500	1000	380	15000	3000		240	365	
κ _W [%]	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
κ _Z [%]	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
κ_{g} [%]	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
κ _γ [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29
κ _{Zγ} [%]	10.	—	5.7	3.8	99*	86*	85*	120*	15	6.9	8.2	81*	75 *	0.69
κ_c [%]	-	4.1	-	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
κ _t [%]	3.3	—	2.8	1.7	-	6.9	1.6	-	_	2.7	-	-	_	1.0
κ _b [%]	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
κ _μ [%]	4.6	_	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41
κ_{τ} [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

What has been explored this year in Bari

First estimation of Higgs couplings to <u>Z bosons</u> and <u>c-quark</u>

- $H \rightarrow ZZ^* \rightarrow 4\mu$ (Master thesis, A. Zaza)
- $H \rightarrow c \bar{c}$ (Master thesis, P. Mastrapasqua)

Supervisor: A. Colaleo Co-supervisor: R. Venditti Support: F. Errico

$H \to Z Z^* \to 4 \mu$ Signal and background

 $H \to ZZ^* \to 4 \mu$ is a standard candle in the Higgs sector:

- large signal/background ratio
- small yields [BR(H \rightarrow ZZ) = 2.62 \cdot 10⁻², BR(Z \rightarrow $\mu^{+}\mu^{-}$) = 3.37 \cdot 10⁻²]
- favored to measure the Higgs boson coupling to Z bosons at a muon collider.
- MC samples fully simulated with the latest geometry of the Muon Collider

SIGNAL PROCESS:	2 7 6		SIGNAL	$H \rightarrow ZZ^* \rightarrow$	• 4μ
$\mu^+\mu^- \rightarrow H \nu_\mu \overline{\nu_\mu}$	w_+ mu_+ 5	√s (TeV)	L (fb ⁻¹)	σ (fb)	Expected events
\Box ZZ [*] \rightarrow 4 μ	mu+ ym~ 3	1.5	500	$9.14 \cdot 10^{-3}$	4.57
	1 8	3.0	1300	$1.47 \cdot 10^{-2}$	19.16

> SM IRREDUCIBLE BACKGROUND:

 $\mu^+\mu^- \rightarrow 4\mu \nu_{\mu}\overline{\nu_{\mu}}$ ~ 5000 Feynman diagrams

Selections applied at the generator level:

 $p_T > 5 \ GeV; \ |\eta| < 2.5; \ 10 < m_{\mu^+\mu^-} < 150 \ GeV.$

4µ-SM BACKGROUND					
√s (TeV)	L (fb ⁻¹)	σ (fb)	Expected events		
1.5	500	$9.18 \cdot 10^{-3}$	4.59		
3.0	1300	$1.79 \cdot 10^{-2}$	23.21		

5

Muon reconstruction performance

- Track reconstruction based on conformal tracking
- Muons are reconstructed with a particle flow approach combining tracker tracks with hits in calorimeters and muon system

Estimation of the impact of the BIB: cone-filter for tracker hits to reduce the processing time.

- ➤ Tracking efficiency slightly reduced when including BIB O(10%) → mitigation strategy under development
- Results used for parametric evaluation of the BIB impact on the final results

$H \rightarrow ZZ^* \rightarrow 4\mu$

$H \rightarrow ZZ^* \rightarrow 4\mu$ topological selection

Good quality final state muons:

- $p_T > 5 \ GeV; |\eta| < 2.5;$
- $D_0 < 2mm; Z_0 < 10mm;$

Z candidates:

OS muon pairs $12 < m_{\mu\mu} < 120 \ GeV$. <u>ZZ candidates</u>: non-overlapping Zs

- Z₁: Z candidate with mass closest to the nominal value
- Z₂: other Z candidate

Selection of ZZ candidates:

- $\Delta R(\mu_i, \mu_j) > 0.02$
- $p_{T,\mu_i} > 20 \text{ GeV}$
- $p_{T,\mu_i} > 10 \text{ GeV}$
- Z_1 mass > 40 GeV
- $m_{4\mu} > 70 \text{ GeV}$
- Arbitration based on Z1 mass

$\sqrt{s} = 1.5 \text{ TeV}$

Sig	nal	Back	ground
Events	Efficiency (%)	Events	Efficiency (%)
2.97 <u>+</u> 0.02	65.13 <u>+</u> .21	3.93 <u>+</u> 0.01	85.77 <u>+</u> 0.01

$\sqrt{\mathrm{s}}=3$ TeV						
Signal Background						
Events	Efficiency (%)	Events	Efficiency (%)			
10.77±0.06	56.19 ± 0.22	18.6 <u>+</u> 0.1	80.04 ±0.09			

$H \rightarrow ZZ^* \rightarrow 4u$ $H \rightarrow ZZ^* \rightarrow 4\mu$ Preliminary results

 10^{-3}

10

110

120

- Results can be improved by a factor 2 including all the ۲ leptonic channels (assuming same efficiencies)
- Further improvement: inclusions of the fully hadronic final states

07/09/20

 $m_{4\mu} (GeV)$

140

130

140

H-to-c-quark coupling at Muon Collider

	physics process	σ (fb)	generator
	$\mu^+\mu^- \to H\nu\bar{\nu} \to c\bar{c}\nu\bar{\nu}$	8.9	pythia
c-jet samples	$\mu^+\mu^- \rightarrow c\bar{c} \ 2leptons$	399	madgraph
	$\mu^+\mu^- \to H \nu \bar{\nu} \to b \bar{b} \nu \bar{\nu}$	180	pythia
b-jet samples	$\mu^+\mu^- \rightarrow b\bar{b}$ 2leptons	508	madgraph
light-flavour-	$\mu^+\mu^- \to H\nu\bar{\nu} \to gg\;\nu\bar{\nu}$	26.4	pythia
jet samples	$\mu^+\mu^- \rightarrow 2 light \ 2 leptons$	2.8 . le6	madgraph

$H \rightarrow gg$, $H \rightarrow c\overline{c}$, $H \rightarrow b\overline{b}$

are kinematically indistinguishable.

- Dedicated tagger to discriminate c jets from b and light-flavour ones.
- Heavy-flavour hadron characteristics:
 - **1.** Secondary vertices (SV)
 - 2. Displaced tracks
 - 3. Low-energy non isolated leptons

H→cc

C-jet tagging algorithm: the variables

- Vertex category
- Number of SV, Number of tracks from SV
- 2D and 3D SV flight distance significance Vertex variables
- Corrected mass, Mass-energy fraction
- SV Boost, Energy ratio , ΔR (SV, jet-axis)
- 2D, 3D signed impact parameter (SIP) significance
- Number of tracks in jet

Track variables

- ΔR (track, jet-axis), ΔR (Σ tracks, jet-axis)
- 2D, 3D SIP significance of the first track above invariant mass threshold
- $p_{L-jaxis}$ and $p_{L-jaxis}/p$, $p_{T-jaxis}$ and $p_{T-jaxis}/p$, E_T (Σ tracks) / E_T (jet)
- Lepton category
- $p_T/p_T(jet)$
- $p_{T-jaxis}$, $p_{L-jaxis}/p(jet)$

Lepton variables

07/09/20

C-jet tagging algorithm

The variables are combined in a single Boosted Decision Tree. Two independent taggers :

√s=1.5 TeV, 500 fb⁻¹

- b-jets

- c-jets

Signal: c jets

0

0.1

0.2

0.3

0.4

CvsL discriminator

0.5

Bkg : light jets

- light-jets

- CvsB : separate cjets from b-jets
- CvsL : separate c-jets ۲ from light flavor

	b mis	id. pro	obability	light m	isid. p	robability
c-tag	MuColl	CMS	CLIC	MuColl	CMS	CLIC
eff.	(w/o BIB)		(w/o overlay)	(w/o BIB)		(w/o overlay)
50%	7.5%	11%	7%	2.3%	14 %	3 %
60%	10%	14%	11%	6.3%	25~%	6 %
70%	14%	20%	15%	16%	40~%	12 %
80%	19%	26%	23%	31%	55 %	25 %
90%	28%	40%	32%	55%	75~%	52 %

(CvsL, CvsB)	<i>c</i>	<i>b</i>	<i>light — flav</i> .
	efficiency	contamination	contamination
(0.04, 0.00)	40 %	13 %	5 %

$H \rightarrow c \bar{c}$ preliminary results

- After flavor tagging, Higgs candidates are built using the two highest pT jets and further topological selections are applied
- E_H > 130 GeV, pT_H > 30 GeV
- $\Delta R(j_1, j_2) < 3, m_H \in [110, 130] \text{ GeV}$

\sqrt{s} = 1.5 TeV, 500 fb^{-1} (no BIB overlay)						
$S/\sqrt{S+B}$	$\Delta\sigma/\sigma$	$\Delta g_{Hcc}/g_{Hcc}$				
9.5	10.5 %	5.5 %				

Projection at \sqrt{s} = 3 TeV, 1300 fb^{-1} (assuming same selection efficiencies)

$S/\sqrt{S+B}$	$\Delta\sigma/\sigma$	$\Delta g_{Hcc}/g_{Hcc}$
20.4	4.9 %	2.6 %

CLIC: 350 GeV, 500 fb^{-1} : **6.2** % precision CLIC: 1.4 TeV, 1500 fb^{-1} : **2.3** % precision

Before topological selections

After topological selections

Summary

- The Muon Collider is the dream machine for Higgs Physics and beyond
- So far measured Higgs couplings with full simulation/extrapolations (Vs=3 TeV):
 - Hbb: 1% (published result)
 - Hcc: 2.3%
 - HZZ: 8% (only electron and muon final states)
- Precision improves with increasing energy → Muon Collider has the potential to reach higher energy wrt electron-based colliders.

Goal for next year:

- Inclusion of the BIB and impact on the final results
- Re-optimize analysis strategy for both Hcc and HZZ
- Optimize muon and jet reconstruction (next slide)

Perspectives and future challenges

The reconstruction of final states leptons and jets play a crucial role.

- Efficient vertexing and tracking rely on high granular tracker
- Reliable jet reconstruction limited by the calorimeters
- Muon tagging is crucial and muon stations are not yet fully exploited

Physics channel will <u>drive the detector design</u>

- Presently, just the Higgs sector has been considered
- Near future: keep going in the Higgs sector and exploring BSM multi-TeV signature
- BSM signatures/Going up with COM energies poses new challenges → e.g. merging final state jet in a single fat jet
 - Jet substructure and flavor tagging relies on information created at one spatial location during the decay of the original particle.
 - Detector design should be optimized accordingly

Backup

The Muon Collider experiment and challenges

Jet reconstruction

- Complex task: tracker info + energy deposits in calorimeters
- Particle reconstruction is performed through Pandora Particle Flow (PF) algorithm → improve the jet energy resolution.
- Output of PF is used for jet clustering: k_T algorithm with radius parameter R = 1.0.

07/09/20