Characterization of Very Low Intensity Ion Beams from CERN REX/HIE-ISOLDE Linear Accelerator

Niels Bidault – Thesis Defence

BE-OP-ISO, CERN, 1211 Geneva 23, Switzerland University of Rome 'La Sapienza' & INFN, 00185 Rome, Italy

Beam Quality

Beam Intensity Optimization

Slow extraction

Charge-breeding performances

Transverse Beam Properties

Quadrupole-scan

Trace space reconstruction

Beam Purity

EBIS partial pressures

Rare contaminants

Longitudinal Beam Properties

Beam energy distribution

Bunch structure

Table of contents

The CERN Accelerator Complex

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

Research at ISOLDE

Experimental Hall

Beam Quality

Beam Intensity Optimization

Slow extraction

Charge-breeding performances

Transverse properties

Quadrupole-scan

Trace space reconstruction

Beam Purity

EBIS partial pressures

Rare contaminants

Longitudinal properties

Beam energy distribution

Bunch structure

Table of contents

REX-ISOLDE

4/23

Slow Extraction

"Slow Extraction of Charged Ion Pulses from the REXEBIS", N. Bidault, et al., AIP Conf. Proc. 2011 (2018) 070003.

Axial energy distribution

Technique Variation of REXEBIS extraction potential and monitoring of escaped ions to reconstruct the axial energy distribution.

Time-of-Flight of ions measured after the A/q-Separator when gating with the outer barrier.

Ionic axial energy distribution measured at REXEBIS extraction, as a function of the electron beam current.

Assumption lon energy distributions are Maxwell-Boltzmann with 5 degrees of freedom: $f_i(E_{\phi})dE_{\phi} = \frac{4}{3}N_i\sqrt{\frac{1}{\pi}}(E_{\phi})^{3/2}\left(\frac{1}{k_BT_i}\right)^{5/2}\exp\left(\frac{-E_{\phi}}{k_BT_i}\right)dE_{\phi}$

Energy dynamics
$$\frac{\mathrm{d}k_B T_i}{\mathrm{d}t} = \left(\frac{\mathrm{d}k_B T_i}{\mathrm{d}t}\right)^{\mathrm{Spitzer}} + \left(\frac{\mathrm{d}k_B T_i}{\mathrm{d}t}\right)^{\mathrm{Ionisation}} + \sum_j \left(\frac{\mathrm{d}k_B T_i}{\mathrm{d}t}\right)_j^{\mathrm{Transfer}} - \left(\frac{\mathrm{d}k_B T_i}{\mathrm{d}t}\right)^{\mathrm{Escape}}$$

Longitudinal Properties

Intensity

EBISIM code: Charge state and energy dynamics

EBISIM package collection of tools for simulating the evolution of the charge state distribution inside an Electron Beam Ion Source / Trap (EBIS/T) using Python. <u>GitHub (https://github.com/HPLegion/ebisim#readme</u>). Developed by Hannes Pahl (CERN).

7/23

EBIS plasma: Dielectronic recombination process

Experimental setup ³⁹K^q for q = 13...17 @ 4 keV/u . RR = 1 Hz; Breeding time = 995 ms; I_{e-} = 50 mA. Potential use for charge state selectivity

Measurement of the charge state relative abundancies and comparison with EBISIM code featuring dielectric recombination effects in REXEBIS.

Intensity

Space charge potential inside an EBIS

Space charge potential from the electron beam only.

With uniform e-beam:

$$\phi(r) = U_t - \phi_0 \cdot \begin{cases} \left(2\ln\frac{r_t}{r_e} - \frac{r^2}{r_e^2} + 1\right) &, |r| \le r_e \\ 2\ln\frac{r_t}{|r|} &, |r| > r_e \end{cases}$$

Space charge potential including ion beam compensation.

Gauss law:

$$\nabla \cdot \mathbf{E} = \frac{\partial}{\partial r} \left(r \frac{\partial \phi(r)}{\partial r} \right) = \frac{e}{\varepsilon_0} (n_e(r) - \sum_i \sum_q q_i n_{i,q}(r))$$

Using Boltzmann distribution:

$$n_i(r, t = \infty) = n_i(0) \exp\left(-\frac{Q_i\phi(r)}{k_B T_i}\right)$$

Intensity

Purity

CERN

Beam properties at extraction from an EBIS

Average radius of the ion cloud versus temperature.

Ion cloud characteristic radii:

Intensity

$$r_i = \int_{\mathbb{R}_+} r^2 n_i(r) \mathrm{d}r$$
 $r_i^{\mathrm{rms}} = \sqrt{\int_{\mathbb{R}_+} r^3 n_i(r) \mathrm{d}r}$

Deduction of the overlap factor between electron and ion distributions.

Purity

Normalized emittance of extracted beam in a field free region.

Transverse emittance in EBIS (Cartesian coordinates):

$$\varepsilon_x = \sqrt{\frac{k_B T_i}{2m_i v_z^2}} \left[(r_i^{\rm rms})^2 - \frac{r_i^2}{\pi} \right]$$

Emittance in field free region, from canonical momentum conservation,

$$\varepsilon_x^2(B=0) = \varepsilon_x^2(B=B_d) + \frac{Q_i^2 B_d^2}{16m_i^2 v_z^2} \left(r_i^{\text{rms}}\right)^2$$

10/23

Measurement of the overlap factor

Experimental setup Neutral gas injection of ¹²⁹Xe. Electron beam with a current of 200 mA and energy about 6 keV. Axial energy scans with varying breeding time.

Method

Fitting of three free parameters, using the lower gamma incomplete function:

$$f(U) = I_0(1 - \gamma \left(\frac{q_i U - E_0}{k_B T_i}, \frac{5}{2}\right))$$

Results

Estimate of the ion temperature. Deduce the ion radial distribution. Calculate the overlap factor.

Conclusion

The ion cloud remains confined within the electron beam.

Heating rate:

- Measured: 3.5 keV/s
- From Landau-Spitzer: 2.4 keV/s

Estimation of the effective electron current density

Objective Estimate the effective electron current density j_{eff}, when comparing the measured charge state distributions with the EBISIM code.

Method

Measurement of the charge state distribution of ¹²⁹Xe^{q+} for different breeding time.

Result

Deduce the effective electron current density from a least-square minimization between the EBISIM code and the measurements.

Conclusion

□ $j_{eff} = 600 \text{ A/cm}^2 \text{ for } I_{e_-} = 300 \text{ mA}.$ □ $j_{eff} = 400 \text{ A/cm}^2 \text{ for } I_{e_-} = 200 \text{ mA}.$

The decreasing trend can be explained with the reduction of the overlap factor.

Beam Quality

Beam Intensity Optimization

Slow extraction

Charge-breeding performances

Transverse properties

Quadrupole-scan

Trace space reconstruction

Beam Purity

EBIS partial pressures

Rare contaminants

Longitudinal properties

Beam energy distribution

Bunch structure

Table of contents

Abundant contamination

Technique Variation of REX A/q-Separator magnet, monitoring of current passing through slit on Faraday cup.

Purity

Intensity

Transverse Properties

From epA to single-ion detection

Technique Instead of varying REX A/q-Separator magnet, all necessary beam optics and RF, from REXEBIS to the Si detector, are scaled for each A/q step.

Objective Anticipate on the beam purity and probe A/q-areas where Faraday cups do not allow for identification

Experimental setup in 2020, using non-adiabatic gun with IrCe cathode at higher electron beam density:

Purity

- Confirmation of the capability to probe rare contaminants.
- Residual gas ions were accelerated through the RFQ and acquired on a large Si detector installed directly afterward.
- Intensities are representative of reality.

Rare contaminants

Method A/q-scan measured with a silicon detector. $I_e = 200 \text{ mA}$, $E_e = 6 \text{ keV}$.

Application Investigation on the presence of Ir or Ce from the electron gun cathode using the silicon detector energy histograms.

CERN

Beam Quality

Beam Intensity Optimization

Slow extraction

Charge-breeding performances

Transverse properties

Quadrupole-scan

Trace space reconstruction

Beam Purity

EBIS partial pressures

Rare contaminants

Longitudinal properties

Beam energy distribution

Bunch structure

Table of contents

HIE-ISOLDE

Intensity

HIE-ISOLDE: Transverse beam profiles at low intensity

Bias and exclusion (threshold) analysis.

Measurement of transverse beam profiles at the same location, with a

Faraday cup for pA current range or a silicon detector below 1 fA.

Faraday cup (left) and silicon detector (right) beam profile measurements

Purity

Result Capability to measure transverse profiles of very low intensity ion beams.

Method

Intensity

HIE-ISOLDE: Transverse beam properties characterization

Experimental setup ³⁹K¹⁰⁺ @ 3.82 MeV/u, thin-slits and quadrupoles are used to probe the tranvserse phase-space for two ranges of intensity.

"Characterization of the transverse properties of very low intensity ion beams at the REX/HIE-ISOLDE LINAC", N. Bidault, et al., NIM-A, in-review.

CERN

HIE-ISOLDE: Transverse beam properties characterization

Experimental setup ³⁹K¹⁰⁺ @ 3.82 MeV/u, thin-slits and quadrupoles are used to probe the tranvserse phase-space for two ranges of intensity.

Results	Plane	Parameter	Value SD	Value FC
		$\varepsilon_x \ [\pi.mm.mrad]$	0.80(5)	0.82(5)
		α_x	-0.10(15)	0.05(15)
	x-plane (a)	$\beta_x \; [\mathrm{mm.mrad}^{-1}]$	4.8(5)	5.1(5)
		$\gamma_x \text{ [mrad.mm^{-1}]}$	0.21(3)	0.20(3)
		$\chi^2_{SD/FC}(\sigma^2_{11})$	0.988	
		$\varepsilon_y \ [\pi.\text{mm.mrad}]$	0.71(5)	0.75(0.5)
		$lpha_y$	-0.64(15)	-0.60(15)
	y-plane (b)	$\beta_y \; [\text{mm.mrad}^{-1}]$	2.4(3)	2.8(3)
		$\gamma_y \; [mrad.mm^{-1}]$	0.25(11)	0.23(9)
		$\chi^2_{SD/FC}(\sigma^2_{11})$	0.984	

Method With the quadrupole scan the tranvserse phase-space rorated and sliced once.

Longitudinal Properties

19/23

Transverse Properties

Beam Quality

Beam Intensity Optimization

Slow extraction

Charge-breeding performances

Transverse properties

Quadrupole-scan

Trace space reconstruction

Beam Purity

EBIS partial pressures

Rare contaminants

Longitudinal properties

Beam energy distribution

Bunch structure

Table of contents

HIE-ISOLDE: Beam energy distribution measurement

Technique Use of an HEBT dipole as energy-spectrometer and three vertical slits. Acquisition of the beamlet current with a silicon detector.

Method Estimate the inherent spread introduced by the thin slits in the measurement channel and deconvolute the energy distribution measured from a RIB.

20/23

Purity

HIE-ISOLDE: Longitudinal phase-space characterization

$\mathscr{E}(z_0): \gamma_z(\Delta t)^2 + 2\alpha_z \Delta t \Delta W/A + \beta_z (\Delta W/A)^2 = \varepsilon_z$

Experimental setup ²⁰Ne⁸⁺@ 6.64 MeV/u, 10 superconducting cavities (SCC) at nominal accelerating phase, 1 SCC acting as a buncher at zero-crossing phase.

Purity

Results

Beam Property	From ΔW	From Δt
$\varepsilon_z \; [\pi.\mathrm{ns.keV/u}]$	1.25(8)	1.18(10)
$lpha_z$	-3.54(30)	-4.68(50)
$\beta_z \; [\text{ns.}(\text{keV/u})^{-1}]$	0.0183(20)	0.0194(30)
$\gamma_z \; [{\rm keV/u.ns^{-1}}]$	970(40)	1110(50)

Method Time structure measurement.

"Longitudinal beam properties characterization of very low intensity ion beams at REX/HIE-ISOLDE", N. Bidault, et al., NIM.A, in prep.

Intensity

Transverse Properties

Summary

Analysis of REXEBIS performance and produced ion beam quality

- Capability to measure rare contaminants over a wide A/q-range
- o Possibility to modulate the macro-time structure of the ion pulse
- Methodology for accessing the axial energy distribution of trapped ions
- Estimation of REXEBIS electron current density for the new electron gun

Post-accelerated ion beam characterization

- o Reliability of transverse beam profile measurements in the sub-femto Ampere range
- Methodology for probing the transverse beam properties at very low intensity
- Consolidation of the beam energy measurement technique

Conclusion

• Characterization of the longitudinal phase-space parameters at very low intensity

Selective Bibliography

Physics at ISOLDE

Butler, P. A. et al. (2020). The observation of vibrating pear-shapes in radon nuclei: Addendum. Nature Comm., Vol. 11, 3560 (2020), DOI: 10.1038/s41467-020-17309-y
Leimbach, D. et al. (2020). The electron affinity of astatine. Nature Comm., Vol. 11, 3824 (2020), DOI:10.1038/s41467-020-17599-2
de Groote, R. P. et al. (2020). Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes. Nat. Phy., 16, 620 (2020), DOI: 10.1038/s41567-020-0868-y
Garcia Ruiz, R. F. et al. (2020). Spectroscopy of short-lived radioactive molecules: A sensitive laboratory for new physics. Nature, Vol. 581, 396-400 (2020), DOI: 10.1038/s41586-020-2299-4
Marsh, B. et al. (2018). Characterization of the shape-staggering effect in mercury nuclei. Nature Physics, (2018), DOI:10.1038/s41567-018-0292-8
Rothe, S. et al. (2013). Measurement of the first ionization potential of astatine by laser ionization spectroscopy. Nature Comm., Vol. 4, 1835 (2013)
Gaffney, L. et al. (2013). Studies of pear-shaped nuclei using accelerated radioactive beams. Nature, Vol. 497, 199-204 (2013), DOI: 10.1038/nature12073
Wienholtz, F. et al. (2013). Masses of exotic calcium isotopes pin down nuclear forces. Nature, Vol. 498, 346 (2013), DOI: 10.1038/nature12226

Physics of Electron Beam Ion Sources

Wenander, F. (2010). Charge breeding of radioactive ions with EBIS and EBIT. Journal of Instrumentation, 5(10). DOI: 10.1088/1748-0221/5/10/C10004 Pikin, A., et al. (2016). Analysis of magnetically immersed electron guns with non-adiabatic fields. Review of Scientific Instruments, 87 (11). DOI: 10.1063/1.4966681 Lapierre, A. (2017). Time-dependent potential functions to stretch the time distributions of ion pulses ejected from EBIST. Canadian Journal of Physics, 95(4), 361–369. DOI: 10.1139/cjp-2016-0716 Marrs, R. E. (1999). Self-cooling of highly charged ions during extraction from electron beam ion sources and traps. Nuc. Inst. and Met. B, 149(1–2), 182–194. DOI: 10.1016/S0168-583X(98)00624-7 Fussmann, G. et al. (1999). EBIT: An Electron Beam Source for the Production and Confinement of Highly Ionized Atoms. Adv. Tech., 429–468. DOI: 10.1007/978-94-017-0633-9_19 Currell, F. J. (2003). The Physics of Multiply and Highly Charged Ions. Springer. DOI: 10.1007/978-94-017-00542-4 Shirkov, G. D., & Zschornack, G. (1996). Electron Impact Ion Sources for Charged Heavy Ions. In Electron Impact Ion Sources for Charged Heavy Ions. Sources for Charged Heavy Ions. DOI: 10.1007/978-3-663-09896-6 Fundamenski, W., & Garcia, O. E. (2007). Comparison of Coulomb Collision Rates in the Plasma Physics and Magnetically Confined Fusion Literature. Efda-Jet Report, 07. Spitzer, L., J. (1952). Equations of Motion for an Ideal Plasma. Astrophysical Journal, 116, 299–316. DOI: 10.1086/145614

Physics of Accelerated Ion Beams

Fraser, M. A. (2012). Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade [University of Manchester]. cds.cern.ch:1423610 Sander, O. R. (2008). Transverse emittance: Its definition, applications, and measurement. AIP Conference Proceedings 212, 127 (May 2008), 127–155. DOI: 10.1063/1.39706 Stockli, M. P. (2006). Measuring and Analyzing the Transverse Emittance of Charged Particle Beams. AIP Conference Proceedings, 868 (December 2006), 25–62. DOI: 10.1063/1.2401393 Wiedemann, H. (2015). Particle Accelerator Physics. In Synchrotron Radiation News (Vol. 7, Issue 4). Springer International Publishing. DOI: 10.1007/978-3-319-18317-6 Wrangler, T.P. (2008) RF Linear Accelerators, 2nd, Completely Revised and Enlarged Edition. Wiley VCH, Physics Textbook. ISBN: 978-3-527-40680-7 Hock, K. M., et al. (2014). Beam tomography research at Daresbury Laboratory. NIMPR A, 753, 38–55. DOI: 10.1016/j.nima.2014.03.050

Thank you for your attention

This work is the result of a collaborative effort involving in particular,

ISOLDE Operation:

Miguel Luis BENITO Eleftherios FADAKIS Simon MATAGUEZ Emiliano PISELLI Jose Alberto RODRIGUEZ Erwin Siesling

CERN REXEBIS:

Hannes PAHL Alexander PIKIN Fredrik WENANDER CERN Instrumentation:

William ANDREAZZA Enrico BRAVIN Sergey SADOVICH University of Rome:

Mauro MIGLIORATI

Non-adiabatic immersed electron gun

Post anode used to adjustment the phase of cyclotron wrt iron ring for different beam currents

Results

Current and losses

I_e well behaved to 300 mA
<15 uA anode losses
<100 uA losses on drift tube in front of suppressor

EBIS breeding efficiency

19.7% for $^{39}{\rm K}^{1+}$ to $^{39}{\rm K}^{10+}$ Almost as high as for old gun

Effective current density

 T_{breed} =44 ms for ¹³³Cs¹⁺ to ¹³³Cs³¹⁺ j_e estimated to ~400 A/cm²

Problems

1. Excessively high cathode work function (activation not helpful)

2. Electron beam losses rises exponentially when $I_e > 300$ mA. Believed to be caused by back-scattered or elastically reflected electrons from the collector region.

 ϕ =2 mm lrCe

cathode

Non-adiabatic immersed electron gun

- Immersed electron gun positioned in low B-field (few hundred Gauss)
- Reduce cyclotron motion with local magnetic element
- Produce a laminar beam that is thereafter adiabatically compressed by main B-field

A. Pikin et al., "A method of controlling the cyclotron motion of electron beams with a non-adiabatic magnetic field", accepted PRAB

EBIS plasma: Analytical framework

Kinetic theory applies to classical plasmas that respect the inequations: Landau distance << Interparticle distance << Debye length

Boltzmann Equation

$$\frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \boldsymbol{\nabla}_r f_i + \frac{Q_i}{m_i} (\boldsymbol{E} + \mathbf{v} \times \boldsymbol{B}) \cdot \boldsymbol{\nabla}_v f_i = \left(\frac{\partial f_i}{\partial t}\right)_{\text{col}}$$

Unique Maxwellian steady state. Collisionless plasma in electromagnetic fields, i.e. Maxwell-Vlassov equation.

Figure Self collision rate calculated for multicharged xenon with a density 10⁴ mm⁻³.

Total collision rate

 $u_i = \nu_{ie} + \sum_j \nu_{ij}$ Relaxation to Boltzmann distribution.

Self-collision rate and isotropization

$$\nu_{ii} = \frac{1}{(4\pi\epsilon_0)^2} \frac{4\sqrt{2\pi}}{3} n_i \left(\frac{q_i^2 e^2}{m_i}\right)^2 \left(\frac{m_i}{k_B T_i}\right)^{3/2} \ln\Lambda_{ii} \qquad T_\perp - T_\parallel \simeq \frac{3T_i}{\nu_{ii}} \frac{\mathrm{d}}{\mathrm{d}t} \ln(\frac{B_d}{n_i^{2/3}})$$

Ion Heat Capacity

 $\partial C_V = \frac{\partial E_i}{k_B \partial T_i} = \frac{3}{2} + \frac{q_i}{k_B} \int \frac{\partial \phi(\mathbf{r}) f_i(\mathbf{r})}{\partial T_i} d\mathbf{r}$ Degrees of freedom. Trapping effectiveness.

Silicon Detector specifications

Figures Diagram of the Silicon Detectors DAQ at HIE-ISOLDE.

	Canberra's model	Radius [mm]	Resolution	
Туре			Energy* [keV]	Time [ns]
1	PD50-11-300RM	4.0	11	5
2	TMPD50-16-300RM	4.0	15	0.2
3	PD600-20-300RM	13.8	20	5

Figure Saturation curves.

Table Basic parameters of 300 µm-thick PD-PIPS detectors used at HIE-ISOLDE (* ²⁴¹Am, 5.486 MeV alphas).

