Preventivi e Anagrafica 2022 Roma Tor Vergata 14/7/2021

B.Liberti come Coordinatrice Locale CSN1

Esperimenti e Sigle a Tor Vergata

ATLAS → A. Di Ciaccio
FASE2_ATLAS → A. Di Ciaccio
GMINUS2 → G. Di Sciascio
LHCb → E. Santovetti
NA62 → A. Salamon

Muon g-2 Experiment

L'esperimento misura la frequenza di precessione anomala dello spin del muone in un campo magnetico.

Per particelle relativistiche:

$$\begin{split} \vec{\omega}_{a} &= \vec{\omega}_{s} - \vec{\omega}_{c} \\ &= -\frac{e}{mc} \Big[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \left(\frac{\gamma}{\gamma + 1} \right) \left(\vec{\beta} \cdot \vec{B} \right) \vec{\beta} \Big] \end{split}$$

Il termine di campo elettrico $\vec{\beta} \times \vec{E}$ è causato dai

quadrupoli elettrostatici usati per il focussing del fascio; per $\gamma = 29.3$ (CERN III) il termine si annulla. Usando un campo magnetico perpendicolare al fascio $\vec{\beta} \cdot \vec{B} = 0$, l'espressione diventa^{*}:

$$\vec{\omega}_a = -\frac{e}{mc}a_\mu \vec{B} \to a_\mu = \frac{g_e}{2}\frac{m_\mu}{m_e}\frac{\mu_p}{\mu_e}\frac{\omega_a}{\omega_p}$$

Bisogna misurare precisamente

 $\omega_{\rm a}$ e il campo magnetico ($\omega_{\rm p}$).

* Questi termini verranno aggiunti come correzioni al valore finale con le loro sistematiche

- Anello di accumulazione da 1.45 T
- 24 calorimetri (1296 cristalli di PbF2)
- 2 tracciatori
- 4 quadrupoli per il focussing verticale
- 3 kickers per il posizionamento del fascio
- 378 sonde NMR per la misura del campo magnetico
- Sistema laser per la misura del guadagno dei SiPM

Risultato analisi del Run 1 (2018)

- Risultato in accordo con la misura precedente a BNL
- Discrepanza con il valore teorico confermata (da chiarire la discrepanza tra il valore teorico calcolato tramite le relazioni di dispersione, Standard Model nel plot, e quello calcolato dal gruppo BMW con il calcolo L-QCD)
- 4 articoli pubblicati:
 - Phys.Rev.Lett. 126 (2021) 14, 141801
 - Phys.Rev.D 103 (2021) 7, 072002
 - Phys.Rev.A 103 (2021) 4, 042208
 - Phys.Rev.Accel.Beams 24 (2021) 4, 04 4002
- Notizia largamente diffusa sulla stampa nazionale ed internazionale

Performance dell'esperimento

Last update: 2021-06-27 08:00:33, Total = 5.5141 xBNL

Run-4 : Total = 5.5141, Production = 5.2496, Systematic = 0.1968, Test/Ignore = 0.0676 xBNL

Il run 4 è ufficialmente terminato alle 08:00 (Fermilab) del 27-06-2021; la statistica totale raccolta è di 12.9 x BNL (prima dei tagli di qualità per l'analisi). A sx la statistica totale, a dx il dettaglio del run 4

Futuro dell'esperimento

- Shutdown estivo con update di alcuni sistemi (tra cui il magnetometro con partecipazione INFN)
- Run 5 previsto per Ott-Nov 2021→ Maggio-Giugno 2022
- Ipotesi di un Run 6 nel 2022 con muoni negativi (dipende dalla schedule di Mu2e)

Risultati proiettati usando lo stesso valore medio e una stima dell'incertezza basata solo sulla statistica

Attività di g-2 Tor-Vergata

- Calibrazione del guadagno dei SiPM tramite il sistema laser sviluppato da INFN-INO
- Analisi della frequenza di precessione anomala per il Run 1
- Turni macchina in presenza (Gennaio 2020) e da remoto (Ott 2020 - Jun 2021)

In basso la distribuzione dei positroni in funzione di energia e tempo, il fit del wiggle plot e sua trasformata di Fourier

Attività di g-2 Tor-Vergata

- Coordinamento del gruppo di ω_a-Europa per i Run 2-3 (M. Sorbara)
- nuovo progetto per la riduzione della sistematica di pile-up (gruppo di lavoro reconITA)
- Turni macchina in presenza e/o remoto 2022

Esempio procedura di fit degli impulsi del segnale dei SiPM in sviluppo per il progetto reconITA

Anagrafica 2022

Giuseppe Di Sciascio: 100% Silvia Miozzi: 100% Giovanni Maria Piacentino: 0% Matteo Sorbara: 100% Nicola Fratianni: 100%

Esperimento LHCb al CERN

Scopo dell'esperimento è la verifica del modello standard delle interazioni fondamentali e l'eventuale **scoperta di nuova fisica** al di fuori di questo, attraverso misure di decadimenti più o meno rari (con o senza violazione di CP) di adroni con beauty

571 articoli e 40787 citazioni

l'attività del gruppo di Tor Vergata

Il nostro gruppo è impegnato nel progetto di **upgrade** dell'esperimento (Run3, 2022 → 2026, luminosità x5). In particolare partecipa alla realizzazione del nuovo sistema di **acquisizione dati** per il rivelatore di muoni Partecipa alla presa dati ed alla ordinaria manutenzione del rivelatore di muoni, di cui ha partecipato alla costruzione.

Partecipa all'**analisi dei dati**, portando avanti diverse misure di massa e Branching fractions

Il gruppo

Alessia Satta	Ric INFN	100%
Emanuele Santovetti*	PA	100%
Giovanni Paoluzzi	Tecnico	50%

Le richieste per il 2022

Missioni	17 KE
Consumo	3.0 KE

Le richieste di missioni sono per le riunioni di collaborazione e per test beam e test del nuovo sistema di acquisizione

NA62 Collaboration (~ 200 participants): Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

Goal: O(10%) precision measurement of BR(K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$)

- Statistics: O(100) events
- K⁺: decays 10¹³
- Signal acceptance: O(10%)
- Background rejection: > 10¹¹

14/07/2021

[NA62 Detector Paper, 2017 JINST 12 P05025]

SPS beam

- 400 GeV/c protons
- 2x10¹² protons/spill
- 3.5 s spill
- ~10¹⁸ POT/year

Secondary beam

- 75 GeV/c momentum, 1% bite
- 100 μrad divergence (RMS)
- 60x30 mm² transverse size
- K⁺(6%)/π⁺(70%)/p(24%)
- 750 MHz of particles at GTK3

Decay region

- 75 m fiducial region
- ~5 MHz K⁺ decay rate
- Vacuum ~10⁻⁶ mbar

14/07/2021

Consiglio di Sezione - Preventivi

MA62 The NA62 detector

14/07/2021

Consiglio di Sezione - Preventivi

NA62 A Tor Vergata: L0Calo - trigger calorimetrico

7 x Merger

X

L L

CPT R)

del run del 2015 (37 TEL62 e 111 mezzanini)

1 x Concentrator

RX X

8 ch

- Aggiunti gli ingressi dei calorimetri elettromagnetici IRC e SAC e dei calorimetri adronici MUV1 e MUV2
- Primitive di trigger su link GbE all'L0 Trigger Supervisor

NA62 A Tor Vergata: L0Calo - trigger calorimetrico

70 deserializer cards (collaborazione con INFN Pg)

Front-End cabling (2 crate 9U, 964 pad)

TX-RX cabling (1 crate 9U, 64 cavi, 3.4 Gbps per cavo)

14/07/2021

Consiglio di Sezione - Preventivi

NA62 Calorimetric trigger performances

A62 Attivita' nel 2021 e 2022

2021: installati i mezzanini e sviluppato il firmware per il readout del calorimetro ad L0

2021: correzione dei T0 del trigger

Presa dati (con responsabilità del trigger calorimetrico):

- 18 settimane nel 2021

- 32 settimane nel 2022 14/07/2021

Consiglio di Sezione - Preventivi

Anagrafica

- A. Salamon:30%
- R. Ammendola: 20%
- V. Bonaiuto (P.A. Ingegneria): 70%
- V. Sargeni (P.A. Ingegneria): 80%
- G. Paoluzzi: 30%

Richieste

- Missioni: 30 kE
- Consumo: 8 kE
- Licenze SW: 1 kE
- Inventario: 1 kE
- SPServizi: 4 kE

ATLAS

ATLAS Resp. Loc. A. Di Ciaccio

Overall $\sigma(obs) / \sigma(SM) = 1.04^{+0.09}_{-0.08}(stat.)^{+0.04}_{-0.03}(exp.)^{+0.06}_{-0.05}(th.) = 1.04^{+0.12}_{-0.10}$

ATLAS- Physics

• ATLAS -RPC (muon trigger) maintance and DCS

• ATLAS-Upgrade FASE1 Progetto BIS78

ATLAS- Physics

- Top quark mass
- CP Asymmetries in B from top
- Resonances in top pairs with dilepton events
- Exclusive Flavour Changing Neutral Current decays t → Zc
- Measurement of the BR for $B^0_{(s)} \rightarrow \mu\mu$ and its effective lifetime
- W+ charm cross section
- Triple differential top production cross section

ATL-CONF-2019-046

ATLAS- Physics – Expertise and Roles

Expertise:

Physics of Top quark, Higgs, W, Z, B, Exotics, PDFs

Signatures multi-lepton, jets, MET, b, c final states at low and high boost

Low-level objects muon triggering reconstruction, displaced vertex reconstruction, muon-in-jet id

Current Coordination Roles:

- Muon Combined Performance
 M.Vanadia 2020-2021
- Parton Density Functions Forum
 F.Giuli 2020-2021
- Resp. Fisica ATLAS Italia

U. De Sanctis

ATLAS -RPC (muon trigger) maintenance and DCS

Lavoro di minimizzazione perdite di gas

- Riparazione perdite di gas
- Nuovo sistema di distribuzione del gas
- Valvole di non ritorno sulle linee di uscita

Upgraded system

System until Run-2

ATLAS-Upgrade FASE1 Progetto BIS78

- The existing 32 BIS7 and BIS8 MDT will be replaced by 16 new muon stations made of:
 - one sMDT BIS7+8 chamber
 - two RPC triplets (BIS7 and BIS8)
- Selectivity in transition region improved by adding a new trigger layer
- 8 stations for one end cap (side A) to be installed in 2020
- BIS₇8 can be considered as a pilot project for the Phase II BI upgrade.

New RPCs: 1 mm x 0.5 ns and up to 7 kHz/cm^2

New Gas Gap

- Thinner gas gap $(2 \text{ mm} \rightarrow 1 \text{ mm})$
- Thinner electrodes (1.8 mm \rightarrow 1.2 mm)
 - Lower detector weight
 - Thinner supports allowed
 - More efficient signal collection
 - Almost halve the applied HV
 - Improved charge distribution
 - Double time resolution

New Front End Electronics

- New amplifier and discriminator
 - Higher rate capability
 - Radiation hardness
 - Better space-time resolution
 - Inexpensive high performance low power FE

ATLAS-Upgrade FASE1 Progetto BIS78

- Progettazione e test chip e schede FE
- Test Gas gap alla produzione, a Gif++
- Armatura e test pannelli di lettura
- Produzione a BB5
- Elettronica di DAQ PAD-Board
- Certificazione Test CR BIS78

Installazione in caverna

Commissioning (HV, LV, DAQ)

ATLAS – Anagrafica

		Ricercatori			
Nome	Età	Contratto	Qualifica	Aff.	%
1 Aielli Giulio		Associato	Ricercatore Universitario	CSN I	10
2 Camarri Paolo		Associato	Prof. Associato	CSN I	10
3 Cardarelli Roberto		Associato	Ass.Senior	CSN I	10
4 Cerrito Lucio		Associato	Prof. Ordinario	CSN I	90
5 De Sanctis Umberto		Associato	Ricercatore B Tempo Determinato Tipo B	CSN I	100
6 Di Ciaccio Anna		Associato	Prof. Ordinario	CSN I	20
7 Faucci Giannelli Michele		Dipendente	Ricercatore	CSN I	0
8 Ferretti Simone		Associato	Assegnista	CSN I	50
9 Giuli Francesco		Associato	Assegnista	CSN I	100
10 Liberti Barbara		Dipendente	Ricercatore	CSN I	10
11 Loffredo Salvatore		Associato	Ricercatore A Tempo Determinato Tipo A	CSN I	10
12 Pizzimento Luca		Associato	Dottorando	CSN I	10
13 Proto Giorgia		Associato	Dottorando	CSN I	20
14 Raffaeli Fabiola		Associato	Dottorando	CSN I	100
15 Rocchi Alessandro		Associato	Dottorando	CSN I	10
16 Santonico Rinaldo		Associato	Prof. Ordinario	CSN I	0
17 Vanadia Marco		Dipendente	Ricercatore	CSN I	80
		Numero Totale Ricercatori	17	FTE: 6.30	

Tecnologi								
Nome	Età	Qualifica	Aff.	%				
		Numero Totale Tecnologi	0	FTE: 0.00				

	Tecnici				
Nome	Età	Contratto	Qualifica	Aff.	%
1 Calconi Laura		Associato	Tecnico Categoria B		50
2 Di Stante Luigi		Associato	Tecnico Categoria B	CSN I	20
3 Pastori Enrico		Dipendente	Collaboratore Tecnico E.R.	CSN I	80
4 Travaglini Marco		Associato	Tecnico Categoria D		50
5 Tusi Enrico Maria		Associato	Tecnico Categoria B		35
	Numero Totale Tecnici	5	FTE: 2.35		

FASE2_ATLAS

FASE2_ATLAS Resp. Loc. A. Di Ciaccio

ATLAS-Upgrade-FASE2 Progetto BI
 → Nuovo layer RPCs nel Inner Barrel

BIS78 in phase-1

BI project

To increase barrel trigger acceptance (73% ☐ 96%), increase redundancy to safely operate the present chambers

96 BIS 1820x916 mm²

116 BIL(BIM,BIR) 2820x1096 mm²

Total surface 1800 m²

FASE2_ATLAS Progetto BI

Progetto Internazionale con forte responsabilità Italiana

Overall project Last chamber Last chamber plan required readv First 12 months of chamber contingency ready 20242027 2022025 prototypes Pre-production production Installation 2021 will be a Pre-Commissioning crucial year for Commissioning the project 152 RUN3 LS₂

Responsabilità

P.L. RPC Chambers and FE: G. Aielli e R.Cardarelli

Gruppi coinvolti: Bologna, Cosenza, Frascati, Napoli, Pavia, Roma I, Roma II Progetto e attività a responsabilità italiana

Deliverables	Quantity
Piani di bakelite	1728
Gas Gap	432
Read Out panel	864
Triplets	144
Front End boards	3810
ASICs used in front end boards	7620
High Voltage Cables	432
Low Voltage Cables	432
Signal Cables (one for 2 FE)	1905
Gas pipes (4 for 1 gap)	1728
Board distributing LV to the FE	288
Board giving the current lecture on the gap	144
DCT boards	~1570
HV/LV power supply	

FASE2_ATLAS Attività in sezione

- Disegno layout gas gap (dist. Gas, dist. HV)
- Nuovo chip ASIC (lettura innovativa)
- Nuova Meccanica
- Produzione e Test Gas Gap
- Produzione e test schede FE
- Assemblaggio e costruzione
- Qualificazione RC degli RPC di produzione

ips under test at General Tecnica

FASE2 ATLAS R&D

- Search for alternative gas mixtures
- High rate capability with new materials
- Alternative layouts for high time resolution
- Alternative read-out for high spatial resolution

HFO/CO₂ variable ratio

- The decrease of the HFO in the HFO/CO₂ ratio produces a reduction in the operating voltage (~ 500 V every 5% of HFO reduction).
- · There is not a great gain in terms of avalanche-streamer/extra-charge separation and charge delivered inside the detector from 15% to 25% of HFO content.
- The intrinsic efficiency is higher than 95% in the mixtures with 15/20/25 % of HFO content, but is higher than 90 % also for the other two mixtures.

Less Fluorine molecules inside the gas mixture could reduce the ageing effects and a higher CO₂ content increase the i-C₄H₁₀ flammable limit

FASE2_ATLAS – Anagrafica

Nome	Età	Contratto	Qualifica	Aff.	%
1 Aielli Giulio		Associato	Ricercatore Universitario	CSN I	90
2 Camarri Paolo		Associato	Prof. Associato	CSN I	90
3 Cardarelli Roberto		Associato	Ass.Senior	CSN I	90
4 Cerrito Lucio		Associato	Prof. Ordinario	CSN I	10
5 Di Ciaccio Anna		Associato	Prof. Ordinario	CSN I	80
6 Liberti Barbara		Dipendente	Ricercatore	CSN I	80
7 Loffredo Salvatore		Associato	Ricercatore A Tempo Determinato Tipo A	CSN I	90
8 Pizzimento Luca		Associato	Dottorando	CSN I	90
9 Proto Giorgia		Associato	Dottorando	CSN I	80
10 Rocchi Alessandro		Associato	Dottorando	CSN I	90
11 Sgarlata Anna		Associato	Prof. Associato	CSN I	100
12 Vanadia Marco		Dipendente	Ricercatore	CSN I	20
		Numero Totale Ricercatori	12	FTE: 9.10	

Nome	Età	Contratto	Qualifica	Aff.	%
		Numero Totale Tecnologi	0	FTE: 0.00	

Nome	Età	Contratto	Qualifica	Aff.	96
1 Di Stante Luigi		Associato	Tecnico Categoria B	CSN I	80
2 Pastori Enrico		Dipendente	Collaboratore Tecnico E.R.	CSN I	20
3 Travaglini Marco		Associato	Tecnico Categoria D		50
4 Tusi Enrico Maria		Associato	Tecnico Categoria B		20
	4	FTE: 1.70			

Appatazioni

Preventivi 2022

		A carico dell'I.N.F.N.											
Sigla	missioni	inviti	consumo	altri_cons	seminari	trasporti	pubblicazioni	manutenzione	inventario	apparati	licenze- SW	spservizi	TOTALI
ATLAS	398.00		23.00										421.00
FASE2_ATLAS			38.50	5.00		10.00			2.00	320.50			376.00
GMINUS2													
LHC-b	17.00		3.00										20.00
NA62													
UE - AIDAINNOVA													
Tot.Sigle	415.00		64.50	5.00		10.00			2.00	320.50			817.00
Dotazioni di CSN I	14.50		10.50		2.00		2.00		19.50				48.50
Totale CSN I Roma II	429.50		75.00	5.00	2.00	10.00	2.00		21.50	320.50			865.50

and the second second