
1

CALOCUBE T+ROC2 PROGRAMMER’S GUIDE

1. INTRODUCTION

This document contains a description of Calocube T+ROC2 registers and it is intended to be used as
programmer guide.

2. HIDRA CHIP SEQUENCE GENERATION.

HIDRA ASIC sequence is stored in a RAM memory as shown in figure 1. Each row (position, address,
state …) of this RAM represent the signals needed by the HIDRA ASIC in a given instant of time and
each column represent therefore the sequence in time of a particular signal. The time distance of two
consecutive rows is corresponding to the time distance of two consecutive rising edges of a 60
MHz clock (distributed to the T+ROC2 from the T+ROC1). A given row contain also the control signal
of a multiplexer governing the next row in time. By default (MUX = 0 in the figure) the next row will be
consecutive to the present one. If the value of MUX control signals is not the default one, the next
position will be selected by the multiplexer accordingly. An external signal (indicated by number 2 in the
figure 1) has priority over all the rest of control signals and allow exit of programmed loops. Sequence
repetition is also allowed by the appropriate control signal (MUX = 3 in the figure) and the content of
register 0x17 containing the times (= TC in figure 1) a given sequence is repeated.

Figure 1 T+ROC2 HIDRA ASIC sequence generation block diagram

RAM memory is up to 4096 position depth and 16 bits wide. RAM address is stored in registers 0x04
(LSB) and register 0x05 (MSB), RAM data is stored at register 0x01 (LSB) and 0x02 (MSB).
Correspondence between bits registers and signals is as follow:



2

BIT 0 RSTA
BIT 1 RSTB
BIT 2 HOLD
BIT 3 HOLDG
BIT 4 CAL_EN
BIT 5 OUT_D
BIT 6 OUT_RST
BIT 7 OUT_CLK
BIT 0 OUT_EN
BIT 1 SCLK
BIT 2 SCS
BIT 3 INC
BIT 4 12
BIT 5 13
BIT 6 EN_TRG/BUSY
BIT 7 RST_COUNT

Table 1. T+ROC2 RAM data registers.

Control signals are INC, 12, 13, RST_COUNT and the external signal is EXT_TRG (not shown in the
list, as far as said previously cannot be set by the RAM bits). If INC is set a loop counter is incremented
as many time as set in register 0x17 (TC) and the next address in RAM where the sequence will continue
is stored at registers 0x0E (LSB) and 0x0F (MSB). When the number of repetitions at register 0x09 are
reached, then the next address position is stored at register 0x0C (LSB) and 0x0D (MSB). If the external
signal EXT_TRG is set then the next address is stored at registers 0x0A (LSB) and 0x0B (MSB). If
RST_COUNT is set the next address will be 0x0000. If signal 12 (or 13) is set a loop counter is
incremented as many time (+1 time) as set in register 0x18 (or 0x19) and the next address in RAM where
the sequence will continue is stored at registers 0x10 (or 0x12) (LSB) and 0x11 (or 0x13) (MSB). When
the number of repetitions at register 0x18 (or 0x19) are reached the next address position will be the
consecutive one.

T+ROC2´s registers can be modified by two means. Through a T+ROC1 serial link access (7500
KBUAD, 8 bits data, 1 start bit , 1 stop bit, no parity) and through an RS232 link access (115 KBAUD, 8
bits data, 1 start bit, 1 stop bit, no parity) .
Any access to modify the content of a T+ROC2 registers is 2 bytes long. First byte represent the register
address and second one the content of that register.

T+ROC2 register address are as follow:

Address R/W Type Description

0x00 R/W REG

Control Register:
Bit 0: 0 sequence reset / 1 normal operation.
Bit 1: GAIN2SEL.
Bit 2: 0 RS232 reset active / 1 RS232 normal operation.
Bit 3: 0 external trigger / 1 internal trigger (for test purposes)
Bit 4: 0 normal operation / 1 internal trigger counter reset
Bit 5: Used for test purposes. Should be 0 during normal operation
Bit 6: Used for test purposes. Should be 0 during normal operation
Bit 7: 1 configuration / 0 data taking
Default register content 0x00.

0x01 R/W REG

This register stores the LSB data to be write into the RAM.
Bit 0: RSTA.
Bit 1: RSTB.
Bit 2: HOLD.
Bit 3: HOLD_G.
Bit 4: CAL EN.



3

Bit 5: OUT_D.
Bit 6: OUT_RST.
Bit 7: OUT_CLK.
Default register content 0x00.

0x02 R/W REG

This register stores the MSB data to be write into the RAM.
Bit 0: OUT_EN.
Bit 1: SCLK.
Bit 2: SCS.
Bit 3: INC.
Bit 4: 12.
Bit 5: 13.
Bit 6: EN_TRG/BUSY.
Bit 7: RST_COUNT.
Default register content 0x00.

0x04 R/W REG
This register stores the LSB RAM address where to write and from
where to read.
Default register content 0x00.

0x05 R/W REG
This register stores the MSB RAM address where to write and from
where to read.
Default register content 0x00.

0X06 R/W REG

It is possible to read the content of most of T+ROC2 registers. This
register store the address of the T+ROC2 register to be read.
0x00: Control Register.
0x01: LSB RAM data
0x02: MSB RAM data
0x03: 0x00
0x04: LSB RAM address
0x05: MSB RAM address
0x06: Read selection register
0x07: 0x00
0x08: 0x00
0x09: Number of times a given sequence is repeated (# INC).
0x0A: Jump Address LSB destination in case an Ext TRG is detected.
0x0B: Jump Address MSB destination in case an Ext TRG is detected.
0x0C: Jump Address LSB destination in case of TC.
0x0D: Jump Address MSB destination in case of TC.
0x0E: Jump Address LSB destination in case of INC.
0x0F: Jump Address MSB destination in case of INC.
0x10: Jump Address LSB destination in case of 12.
0x11: Jump Address MSB destination in case of 12.
0x12: Jump Address LSB destination in case of 13.
0x13: Jump Address MSB destination in case of 13
0x14: Jump Address LSB destination in case of 12 and 13.
0x15: Jump Address MSB destination in case of 12 and 13
0x17: Number of times a given sequence is repeated (# INC).
0x18: Number of times a given sequence is repeated (# 12).
0x19: Number of times a given sequence is repeated (# 13).
0x1A: CAL LOAD
0x1B: ST LOAD
0x1C: ST Threshold at HIDRA2_1
0x1D: ST Threshold at HIDRA2_2
0x1E: ST Threshold at HIDRA2_3
0x1F: ST Threshold at HIDRA2_4
0x20: RS232_Enable_TX only accessible through an RS232 access.
Default register content 0xFF.
0x21: USB_RS232_Enable_TX only accessible through an RS232 access.
Default register content 0x00.



4

0x22: TRG_GEN LSB.
0x23: TRG_GEN LSB.
0x24: GAIN HOLD TIMER LSB
0x25: GAIN HOLD TIMER MSB
0x26: HOLD TIMER LSB
0x27: HOLD TIMER MSB
0x2B: Scaler selector. Default register content 0x00.
0x2C: Scaler LSB. Default register content 0x00.
0x2D: Scaler MSB. Default register content 0x00.

0x07 W REG
Any access to this register followed by any byte content perform a RAM
write at RAM address set by registers 0x05 and 0x04 of the data
contained in registers 0x01 and 0x02

0x08 W REG

0x00:
When an access to this register is followed by byte 0x00, a RAM read is
execute from the address set by registers 0x05 and 0x04. Depending of
the content of register 0x06, LSB (if 0x01) or MSB (if 0x02) of RAM
data is read.
0x01:
When an access to this register is followed by byte 0x01, a register read is
performed depending of the content of register 0x06.

0X09 R/W REG
Number of times a given sequence is repeat.
Default register content 0x3F.

0x0A R/W REG
If an external trigger is detected jump destination address LSB.
Default register content 0xB0.

0x0B R/W REG
If an external trigger is detected jump destination address MSB.
Default register content 0x04.

0x0C R/W REG
If control bit INC is set and has been detected as many times as set in
register 0x09, jump destination address LSB.
Default register content 0x00.

0x0D R/W REG
If control bit INC is set and has been detected as many times as set in
register 0x09, jump destination address MSB.
Default register content 0x00.

0x0E R/W REG
If control bit INC is set and has not been detected the number of times set
in register 0x09, jump destination address LSB.
Default register content 0xC0.

0X0F R/W REG
If control bit INC is set and has not been detected the number of times set
in register 0x09, jump destination address MSB.
Default register content 0x07.

0x10 R/W REG
If control bit 12 is set jump destination address LSB.
Default register content 0x00.

0x11 R/W REG
If control bit 12 is set jump destination address MSB.
Default register content 0x00.

0x12 R/W REG
If control bit 13 is set jump destination address LSB.
Default register content 0x00.

0x13 R/W REG
If control bit 13 is set jump destination address MSB.
Default register content 0x00.

0x14 R/W REG
If control bit 12 and control bit 13 are set jump destination address LSB.
Default register content 0x00.

0x15 R/W REG
If control bit 12 and control bit 13 are set jump destination address
MSB.
Default register content 0x00.

0x17 R/W REG
Number of times a given sequence is repeat. Controlled by signal INC
Default register content 0x3F.

0X18 R/W REG
Number of times a given sequence is repeat. Controlled by signal 12
Default register content 0x3F.

0X19 R/W REG Number of times a given sequence is repeat. Controlled by signal13



5

Default register content 0x3F.

0x1A W REG

CAL MASK LOAD:
Bit 0: CAL CLK.
Bit 1: CAL RST. 0 reset / 1 normal operation.
Bit 2: CAL D
Bit 3: CAL EN (0)
Bit 4: CAL EN (1)
Bit 5: CAL EN (2)
Bit 6: CAL EN (3)
Bit 7: Not used.
Default register content 0x00.

0x1B W REG

ST MASK LOAD:
Bit 0: ST CLK
Bit 1: ST RST 0 reset / 1 normal operation.
Bit 2: ST EN
Bit 3: ST D(0)
Bit 4: ST D(1)
Bit 5: ST D(2)
Bit 6: ST D(3)
Bit 7: Not used.
Default register content 0x00.

0x1C R/W REG
ST Threshold at HIDRA2_1 the mapping of the bits with ASIC TBD
Default register content 0x55.

0x1D R/W REG
ST Threshold at HIDRA2_2 the mapping of the bits with ASIC TBD
Default register content 0x55.

0x1E R/W REG
ST Threshold at HIDRA2_3 the mapping of the bits with ASIC TBD
Default register content 0x55.

0x1F R/W REG
ST Threshold at HIDRA2_4 the mapping of the bits with ASIC TBD
Default register content 0x55.

0X20 R/W* REG
RS232_Enable_TX only accessible through an RS232 access.
Default register content 0xFF.

0x21 R/W* REG
USB_RS232_Enable_TX only accessible through T+ROC1 configuration
access.
Default register content 0x00.

0X22 R/W REG

TRG_GEN LSB. Used to set the frequency of an internal random trigger
generator. This generator will produce a trigger pulse every
200ns*(256*MSB + LSB)* RND_GEN. Where RND_GEN is a number
randomly generated between 1 and 256 (Used for test purposes).
Default register content 0xFF.

0x23 R/W REG

TRG_GEN MSB. Used to set the frequency of an internal random trigger
generator. This generator will produce a trigger pulse every
200ns*(256*MSB + LSB)* RND_GEN. Where RND_GEN is a number
randomly generated between 1 and 256 (Used for test purposes).
Default register content 0xFF.

0x24 R/W REG GAIN HOLD TIMER LSB.
0x25 R/W REG GAIN HOLD TIMER MSB.
0x26 R/W REG HOLD TIMER LSB.
0x27 R/W REG HOLD TIMER MSB.

0x2B R/W REG
Scaler selection (0x00-0x7F)
Default register content 0x00.

0x2C R REG
Selected scaler LSB.
Default register content 0x00.

0x2D R REG
Selected scaler MSB.
Default register content 0x00.

Table 2. T+ROC2 registers



6

 All the register are accessible through a T+ROC1 configuration access or a RS232 link (115000 BAUD, 8
bits data, 1 bit stop, no parity, no flow control) access but registers 0x20 and 0x21. Register 0x20 can only
be write through a RS232 access and register 0x21 can only be write through a T+ROC1 configuration
access. Both of them however can be read either through a T+ROC1 configuration access or RS232 access.
Content of registers 0x20 and 0x21 should to be equal in order to get response from that particular
T+ROC2 through the RS232 link.

Examples

1- Example of how to write (0x02 = MSB_Data, 0x01 = LSB_Data) at position (0x05 = MSB_Add,
0x04 = LSB_Add) in the RAM memory:

FT_HANDLE ftHandle;
FT_STATUS ftStatus;
DWORD BytesWritten;
char TxBuffer[256]; // Contains data to write to device

TxBuffer[0] = 0x00;
TxBuffer[1] = 0x01; // is a write at T+ROC1 configuration T+ROC2 register.
TxBuffer[2] = 0x0A;
TxBuffer[3] = 0x00; // register at T+ROC1 # of Byte to be written to T+ROC1
TxBuffer[4] = 0x05;
TxBuffer[5] = 0xMSB_Add; // MSB of the RAM mem address to be written
TxBuffer[6] = 0x04;
TxBuffer[7] = 0xLSB_Add; // LSB of the RAM mem address to be written
TxBuffer[8] = 0x02;
TxBuffer[9] = 0xMSB_Data; // MSB of the data to be written
TxBuffer[10] = 0x01;
TxBuffer[11] = 0xLSB_Data; // LSB of the data to be written
TxBuffer[12] = 0x07;
TxBuffer[13] = 0x00;

// The content of registers 0x02,0x01 are written in the RAM address at registers 0x05,0x04.
// We choose to load the MSB registers before the LSB but the order can be any the write do // not take
place until the 0x07 , 0x00 is executed at T+ROC2 .

ftStatus = FT_Open(0, &ftHandle);

if(ftStatus != FT_OK) {// FT_Open failed
return;

}

ftStatus = FT_Write(ftHandle, TxBuffer, sizeof(TxBuffer), &BytesWritten);

// sizeof(TxBuffer) = 0x0E

if (ftStatus == FT_OK) {
// FT_Write OK

}
else {

// FT_Write Failed
}
FT_Close(ftHandle);

Comments: No enable of the configuration links, has been made as far as by default all the configuration
links are enabled at T+ROC1.



7

2- Example of how to read from position (0xMSB_Add ,0xLSB_Add) in the RAM memory:

FT_HANDLE ftHandle;
FT_STATUS ftStatus;
DWORD EventDWord;
DWORD TxBytes;
DWORD RxBytes;
DWORD BytesReceived;
DWORD BytesWritten;
char TxBuffer[256];
char RxBuffer[256];

TxBuffer[0] = 0x00; // register at T+ROC1
TxBuffer[1] = 0x01; // register at T+ROC1
TxBuffer[2] = 0x0C; // register at T+ROC1 is a write of
TxBuffer[3] = 0x00; // register at T+ROC1 # of Bytes to write to T+ROC1
TxBuffer[4] = 0x05;
TxBuffer[5] = 0xMSB_Add; // most signifiant byte of the RAM address to write
TxBuffer[6] = 0x04;
TxBuffer[7] = 0xLSB_Add; // Less signifiant byte of the RAM address to write
TxBuffer[8] = 0x06;
TxBuffer[9] = 0x01;
TxBuffer[10] = 0x08;
TxBuffer[11] = 0x00;
TxBuffer[12] = 0x06;
TxBuffer[13] = 0x02;
TxBuffer[14] = 0x08;
TxBuffer[15] = 0x00;

ftStatus = FT_Open(0, &ftHandle);

if(ftStatus != FT_OK) { // FT_Open failed
return;
}

ftStatus = FT_Write(ftHandle, TxBuffer, sizeof(TxBuffer), &BytesWritten);
// sizeof(TxBuffer) = 0x10

if (ftStatus == FT_OK) {
// FT_Write OK
}
else {
// FT_Write Failed
FT_Close(ftHandle);
return;
}

TxBuffer[0] = 0x00; // register at T+ROC1
TxBuffer[1] = 0xC1; // register at T+ROC1 is a read (0x80) of two bytes through link 0 (0x41)
TxBuffer[2] = 0x02; // register at T+ROC1 is a read of TxBuffer[3] bytes
TxBuffer[3] = 0x00; // register at T+ROC1 # of Byte to be written to T+ROC1

ftStatus = FT_Write(ftHandle, TxBuffer, sizeof(TxBuffer), &BytesWritten);
// sizeof(TxBuffer) is now = 0x4

if (ftStatus == FT_OK) {
// FT_Write OK



8

}
else {
// FT_Write Failed
FT_Close(ftHandle);
return;
}

ftStatus = FT_Read(ftHandle,RxBuffer,RxBytes,&BytesReceived);
// where RxBytes is in this example is = 0x02

if (ftStatus == FT_OK) {
// FT_Read OK
}
else {
// FT_Read Failed
FT_Close(ftHandle);
Return;
}
// data stores at RAM address = (MSB_Add, LSB_Add)
// are now in RxBuffer[0]= LSB_Data and RxBuffer[1]= MSB_Data

FT_Close(ftHandle);

Comments: No enable of any configuration link has been made in this example, it is assume therefore that
has been made previously. To perform a read on the RAM memory is preceded by two writes access.

3. LabView CONFIGURATION PROGRAM.

In order to easy the configuration process a LabView program has been developed allowing to load the
sequence, the self- trigger mask and calibration mask from a .CSV file.
Selection of a .CSV format for sequence edition and generation allows the use of common tools like
EXCEL or OPEN OFFICE. Tree column are then generated, the first one represent the RAM hexadecimal
address (to be load on registers 0x04 and 0x05 of T+ROC2), second one represent the status of control
signals according to Table 1 of this document and the corresponding columns in the file (to be load on
registers 0x01 and 0x02 of T+ROC2) third one, if different of zero, represent the jump destination when a
jump condition is reached and the fourth one represent the vaslue of register 0x09, 0x18 and 0x19
depweding on the value of the third column.



9

Figure 2. Sequence .CSV file format.

Examples of this files can be found under the following link:
https://drive.google.com/drive/folders/10x0ShipqAlj7d-CmJNDGhZY3WfP3qGPa?usp=sharing
Program main tab can be seen at figure 3.

To HEX

To HEX

To HEX

To HEX



10

Figure 3. LabView configuration programm main tab.

Up to eight T+ROC2 board can be connected to the same T+ROC1, either for configuration or for data
taking. Up to eight T+ROC2 can be selected then ligthing the corresponding LED control. On a by
T+ROC2 basis the sequence file it is selected.
Similar tab exist for self-trigger and calibration configuration.

Figure 4. LabView configuration programm ST_MASK tab.

3.1 Configuration in Linux

The LabVIEW configuration program has been developed using the FTD2XX driver in synchronous
FIFO mode. “FT calls” designed for the D2xx driver are running under Linux CENTOS7 or Windows7.
The configuration program has been tested under these operating systems. Labview 2017 version has
been downloaded directly from the NI webpage. FTDI has two types of drivers for all supported operating
systems. These are the virtual COM port driver (VCP) and the D2XX API driver. For the installation of



11

the D2XX linux driver, it is recommended to download the suitable Linux D2XX driver of x86 – for 32-
bit IA-32 CPUs from the FTDI D2XX driver webpage. The driver files are contained in a tar gzip file:
e.g. gunzip libftd2xx-i386-1.4.8.tar.gz and tar –xvf libftd2xx-i386-1.4.8.tar

Procedure:
1) All driver files need to be copied and symbolic links created using the Linux sudo command for
root permissions:
sudo cp /releases/build/lib* /usr/local/lib
2) Make the following symbolic links and permission
modifications in /usr/local/lib:
cd /usr/local/lib

sudo ln –s libftd2xx.so.x libftd2xx.so

sudo chmod 0755 libftd2xx.so.1.4.8
3) The symbolic link is used to select a default driver file. Any program can be linked against a

specific version of the library by using a version numbered library file. Make sure the following
dependences are correctly installed:

/etc/udev/rules.d/99-libftdi.rules

/usr/lib/libftdi.so.1

/usr/lib/ftdi.so.1.18.0

4) Add user to the user group

Usermod –G 984 nameuser

Adduser –G 5 nameuser less /etc/groups

Add user nameuser dialout tty

5) Plug in the FTDI based device. VCP driver need to be removed for its particular use:

sudo rmmod ftdi sio.

References

1. Xilinx,“ UG380 - Spartan-6 FPGA” Configuration User Guide (ver 2.10). DS162 - Spartan-6
FPGA Data Sheet: DC and Switching Characteristics (ver 3.1.1). DS160 - Spartan-6 Family
Overview (ver 2.0).

2. Xilinx,“ UG470 - 7 Series FPGAs Configuration User Guide,” ver 1.13.1, (August 21th, 2018).

3. Gianluigi Zampa, “HiDRA2: High Dynamic Range Amplifier frontend ASIC,” HiDRA2
DATASHEET, (March, 2018).

4. FTDI,“FTDI drivers, Document Reference No.: FT 000723 Clearance No.: FTDI 302,” (July 6th,
2017).

5. Analog Devices, “16-Bit, 500 kSPS PulSAR ADC in MSOP,” Datasheet.

6. G.Martínez, et al. “TROC1 manual,” January, 2019. Firmware version x0C0B.


