Beam Monitor for FLASH

Conventional vs Flash Beams

Tools and the Role of Radioluminescence and Cherenkov Emission. Front. Phys. 8:328. doi: 10.3389/fphy.2020.00328

Parameters in Flash Beams

Beam	Accelerator	Energy [MeV/u]	Average Dose Rate [Gy/s]	Repetition Rate	Pulse Duration	Dose per Pulse [Gy]	Max I in 10(
р	<i>Cyclotron (FLASH mode)</i>	60 - 250	40-200	~ 100 MHz	Almost continuous in a full treatment of 200 ms		
12 C	Synchrotron (FLASH mode)	300	80 Gy/s				>8 (
р	Synchro-Cyclotron (FLASH mode)	60 - 250	100-200	~ 650 Hz	1-10 µs	0.1-0.3	
e-	Conventional electron LINAC (FLASH mode)	8-20	40-200	100-200 Hz	~µs		
e-	IORT LINAC (FLASH mode)	7-9	up to 500	1-30 Hz	$\sim \mu s$	up to 20	50 0
e-	Electron FLASH	~ 5-7	0.1-4000 Gy/s	100 Hz	$\sim \mu s$	~ 40	
р	Laser/driven	10 - 60	1 - 70 Gy/min @ 1 or 10 Hz	~ 1 Hz	10 - 100 ns	1-10	no applic
e-	Laser/driven	20-250	1 Gy/s	10 Hz	200 fs	> 0.5	>1 (

Review di detectors

For FLASH, instantaneous dose and the dose per pulse quantities can be orders of magnitude higher than in conventional therapy, leading to issues of saturation, and non-linear response of standard dosimeters at large doses.

- Dose Rate Linearity
- Spatial Resolution
- Time Resolution

- 1. Risoluzione spaziale ~ 1 mm
- 2. Risoluzione temporale compatibile con il fascio (1 Hz di fascio, pulse di 1 μ m) ~ns
- 3. Risoluzione sulla dose.. 3%?
- 4. Indipendente dall'energia del fascio
- 5. Indipendente dalla dose-rate istantanea
- 6. Sensibile alla quantità di ossigeno punto per punto

Ashraf MR et al . doi: 10.3389/fphy.2020.00328

From Ashraf MR et al . doi: 10.3389/fphy.2020.00328

Response	Detectors	Measurement type	FLASH study	Instantaneous dose-rate/dose per pulse (D _p) dependence	Spatial resolution	Time-resolution	Energy dependence
Luminescence	TLD/OSLD	1D, 2D	e [15, 37, 71]	Independent (~10 ⁹ Gy/s) [80, 137]	\sim 1 mm	Passive	Tissue-equiva
	Scintillators	1D, 2D , 3D	p [13, 18]	Independent (~10 ⁶ Gy/s) [29]	\sim 1 mm	~ns	Tissue-equiva
	Cherenkov	1D , 2D, 3D	e [29]	Independent (~10 ⁶ Gy/s) [29]	\sim 1 mm	~ps	Energy depen
	FNTD	2D	NA	Independent (~10 ⁸ Gy/s) [85]	\sim 1 μ m	Passive	Energy depen
Charge	lonization chambers	1D, 2D	p [13, 18, 19] e [15, 37, 71] ph [16, 17]	Dependent on D _p [48, 52] (>1 Gy/pulse),	~3–5 mm	~ms	Energy depen shows up > 2
	Diamonds	1D	p [18]	Dependent on D _p (>1 mGy/pulse) [49]	\sim 1 mm	∼µs	Tissue-equival
	Si diode	1D , 2D	NA	Dependent on D _p [54] (Independent ~0.2 Gy/s) [138]	\sim 1 mm	~ms	Energy depen
Chemical	Alanine pellets	1D	e [12, 15, 37, 139]	Independent (10 ⁸ Gy/s) [69]	$\sim 5\mathrm{mm}$	Passive	Tissue-equiva
	Methyl viologen/fricke	1D	e [29, 48]	Depends on the decay rate and diffusion of radiation induced species	\sim 2 mm	~ns	Tissue-equiva
	Radiochromic film	2D	p [18, 19] e [10–12, 15, 30, 37, 71, 140] ph [16]	Independent (10 ⁹ Gy/s) [70, 71]	~1 µm	Passive	Tissue-equiva
	Gel dosimeters	3D	NA	Strong dependence below 0.001 Gy/s [141] and above 0.10 Gy/s [142]	~1 mm	Passive	Tissue-equiva

From Ashraf MR et al . doi: 10.3389/fphy.2020.00328

Response	Detectors	Measurement type	FLASH study	Instantaneous dose-rate/dose per pulse (D _p) dependence	Spatial resolution	Time-resolution	Energy dependence
Luminescence	TLD/OSLD	1D, 2D	e [15, 37, 71]	Independent (~10 ⁹ Gy/s) [80, 137]	\sim 1 mm	Passive	Tissue-equiv
	Scintillators	1D, 2D , 3D	p [13, 18]	Independent (~10 ⁶ Gy/s) [29]	\sim 1 mm	~ns	Tissue-equiv
	Cherenkov	1D , 2D, 3D	e [29]	Independent (~10 ⁶ Gy/s) [29]	\sim 1 mm	~ps	Energy depe
	FNTD	2D	NA	Independent (~10 ⁸ Gy/s) [85]	$\sim 1\mu m$	Passive	Energy depe
Charge	lonization chambers	1D, 2D	p [13, 18, 19] e [15, 37, 71] ph [16, 17]	Dependent on D _p [48, 52] (>1 Gy/pulse),	~3–5 mm	~ms	Energy depe shows up >
	Diamonds	1D	p [18]	Dependent on D _p (>1 mGy/pulse) [49]	\sim 1 mm	~µs	Tissue-equiv
	Si diode	1D , 2D	NA	Dependent on D _p [54] (Independent ~0.2 Gy/s) [138]	\sim 1 mm	~ms	Energy depe
Chemical	Alanine pellets	1D	e [12, 15, 37, 139]	Independent (10 ⁸ Gy/s) [69]	\sim 5 mm	Passive	Tissue-equiv
	Methyl	1D	e [29, 48]	Depends on the decay rate and diffusion of radiation induced species	\sim 2 mm	~ns	Tissue-equiv
Radiochromi	c 2D	p [18, 19] Indepe	ndent (10 ⁹ Gy/s) [70, 71] ~1	lμm P	assive	Tissue-equiv
film		e [10–12	, 15,				
best pag	ssive detecto	30, 37, 7	1,140]				
		ph [16]					
	Gel dosimeters	3D	NA	Strong dependence below 0.001 Gy/s [141] and above 0.10 Gy/s [142]	~1 mm	Passive	Tissue-equiv

From Ashraf MR et al . doi: 10.3389/fphy.2020.00328

Response	Detectors	Measurement type	FLASH study	Instantaneous dose-rate/dose per pulse (D _p) dependence	Spatial resolution	Time-resolution	Energy dependenc
Luminescence	TLD/OSLD Scintillators	1D, 2D 1D, 2D , 3D	e [15, 37, 71] p [13, 18]	Independent (~10 ⁹ Gy/s) [80, 137] Independent (~10 ⁶ Gy/s) [29]	\sim 1 mm \sim 1 mm	Passive ~ns	Tissue-equiv Tissue-equiv
Cherenkov	1D , 2D, 3	BD e [29]	Independ	dent (~10 ⁶ Gy/s) [29] ~ 1 n	nm ~ps	Ene	ergy depende
Charge	Ionizatio chambers	detectors but	[15, 37, 71] ph [16, 17]	D_p [48, 52] (>1 Gy/pulse),	~3–5 mm	~ms	Energy depe shows up >
	Diamonds Si diode	1D 1D, 2D	p [18] NA	Dependent on D_p (>1 mGy/pulse) [49] Dependent on D_p [54] (Independent ~0.2 Gy/s) [138]	~ 1 mm ~ 1 mm	~μs ~ms	Tissue-equiv Energy depe
Chemical	Alanine pellets	1D	e [12, 15, 37, 139]	Independent (10 ⁸ Gy/s) [69]	\sim 5 mm	Passive	Tissue-equiv
	Methyl viologen/fricke	1D	e [29, 48]	Depends on the decay rate and diffusion of radiation induced species	~ 2 mm	~ns	Tissue-equiv
	Radiochromic film	2D	p [18, 19] e [10–12, 15, 30, 37, 71, 140] ph [16]	Independent (10 ⁹ Gy/s) [70, 71]	~1 µm	Passive	Tissue-equiv
	Gel dosimeters	ЗD	NA	Strong dependence below 0.001 Gy/s [141] and above 0.10 Gy/s [142]	~1 mm	Passive	Tissue-equiv

7

Fluorescence in Air

The fluorescence yield Y is the number of photons produced by one electron per 1 m of path-length. The unit of the fluorescence yield, [photons/m], has practical reasons and was introduced to use the fluorescence yield for air shower measurements.

In order to get a hold on the fluorescence yield, another the fluorescence efficiency Φ has to be defined. The fluo efficiency is the ratio of radiated energy to deposited en given wavelength (with number of emitted photons n_{λ}):

If the number of excited molecules is proportional to the deposited energy, the fluorescence efficiency can also be formulated as:

Here, ne is the number of electrons and $dEp\Delta x$ the deposited energy of one electron according to the Bethe-Bloch equation along a path of length Δx in a gaseous medium of density p. The fluorescence yield can be determined for the number of emitted photons $n\lambda$ per electron and path length.

The fluorescence yield is always, unless explicitly mentioned, defined in units of photons/ m but some authors express it in photons/MeV:

PHD Thesis: The Fluorescence Yield of Air excited by Electron measured with the AIRFLY Experiment BTF: F.Arciprete et al. AIRFLY: Measurement of the fluorescence yield in atmospheric gases January 2006 Czechoslovak Journal of Physics 56:A361-A367

$$\begin{array}{l} \text{requantity,} \\ \text{prescence} \\ \text{nergy at a} \end{array} \Phi_{\lambda} = \frac{\text{radiated energy}}{\text{deposited energy}} = \frac{n_{\lambda} \cdot E_{\lambda}}{E_{dep}}, \end{array}$$

$$\left[\frac{e}{2}\right] = Y \left[\frac{\text{photons}}{\text{MeV}}\right] \cdot \frac{dE}{dX}\rho.$$

Figure 2.8: Fluorescence spectrum of air between 280 nm and 430 nm recorded by AIRFLY with transition labels. The gas was excited by 3 MeV electrons at a pressure of 800 hPa. In the right upper corner, the spectrum reported by Bunner (1967) is shown [15].

	λ	System(ν_i, ν_f)	A_{ν_i,ν_f}		λ	System(ν_i, ν_f)	
	(nm)		$(10^6 \mathrm{s}^{-1})$		(nm)		(
	310.40	2P(4,3)	3.02	—	358.21	1N(1,0)	4
_	†311.67	2P(3,2)	5.94		364.17	2P(4,6)	
•	†313.60	2P(2,1)	10.1		367.19	2P(3,5)	
	†315.93	2P(1,0)	11.9		†371.05	2P(2,4)	۷
	326.81	2P(4,4)	3.71		†375.54	2P(1,3)	۷
	†328.53	2P(3,3)	2.85		†380.49	2P(0,2)	-
	329.34	1N(4,2)	3.19		385.79	2P(4,7)	
	329.84	1N(3,1)	2.08		385.79	1N(2,2)	(
	330.80	1N(2,0)	0.90		388.43	1N(1,1)	۷
	†330.90	2P(2,2)	0.80		389.46	2P(3,6)	
	†333.90	2P(1,1)	0.59		†391.44	1N(0,0)	
	†337.13	2P(0,0)	13.1		†394.30	2P(2,5)	-
	344.60	2P(4,5)	0.12		†399.84	2P(1,4)	
	†346.90	2P(3,4)	0.12		†405.94	2P(0,3)	
	†350.05	2P(2,3)	1.71		409.48	2P(4,8)	
	353.26	1N(5,4)	6.63		414.18	2P(3,7)	
	†353.67	2P(1,2)	5.54		416.68	1N(3,4)	
	353.83	1N(4,3)	7.46		419.91	1N(2,3)	-
	354.89	1N(3,2)	8.09		420.05	2P(2,6)	-
	356.39	1N(2,1)	7.88		423.65	1N(1,2)	۷
	†357.69	2P(0,1)	8.84		427.81	1N(0,1)	

Details on band heads of N₂ and N+₂ between 300nm and 430nm

AIRFLY Exp. SetUP

- Hamamatsu H7195P model and was chosen for low background. It has a bialkali photocatode with a diameter of 46 mm and a peak sensitivity at 420 nm. The bialkali catode has a quantum efficiency at 337 nm of about 8% and a very low dark current.

- The interference filter, used to delimit the wavelength region of the light reaching the PMT, has a peak transmission of about 50% at 340 nm and a width of 10 nm (FWHM). With this filter, the light reaching the PMT originates to 98.3% from the 2P(0,0)-transition at 337 nm.

Energy Dependence

F.Arciprete et al. AIRFLY: Measurement of the fluorescence yield in atmospheric gases January 2006 Czechoslovak Journal of Physics 56:A361-A367 https://www.researchgate.net/publication/215566660_AIRFLY_Measurement_of_the_fluorescence_yield_in_atmospheric_gases

Expected photons

Per elettroni da "13" MeV ci aspettiamo:

- 4 ph. al m di fluorescenza (@ 4π)
- Cherenkov sotto soglia

Per elettroni da 20 MeV ci aspettiamo:

- 4 ph. al m di fluorescenza (@4 π)
- 6 ph. al m di Cherenkov (~ 0.1°)

Per elettroni da 130 MeV ci aspettiamo:

- 5 ph. al m di fluorescenza (@ 4π)
- 70 ph. al m di Cherenkov (~ 1.4°)

Expected photons

According to the detector we decide to implement.. SIT LIAC machine

According to the detector we decide to implement.. SIT LIAC machine

Periscopio@SIT: 30.7.2020

(1)

Per elettroni da "13" MeV ci aspettiamo: 4 ph. al m di fluorescenza (@ 4π) Cherenkov sotto soglia -PERISCOPIO

(1):

- 0.04 ph x 10 cm x 0.1 x 10^10 (elet./pulse) ~ 4 10^8 ph
- ~ 8 10^7 ph.el

Preliminary analysis

Charge

Preliminary Conclusion with PERISCOPIO

We do see the beam IN and OUT difference in the detector.

We observe some 'dependency' in the detector response as a function of the beam, probably we are mainly sensitive to the secondary products.

☐ It can be everything :)

We are too close with the PMT.

The "applicatore" produces background

Expected photons

According to the detector we decide to implement.. SIT LIAC machine

* riflessione on/off

MC FLUKA SIMULATION

By Gaia, Antonio (and Battistoni for support)

MC FLUKA SIMULATION

- # Electrons: 10⁷
- Energy: 13 MeV

KineticEnergy_PMTUP					
Entries	369				
Mean	0.2106				
Std Dev	0.2394				
Integral	354				
KineticEnergy_P	MTUP_100keV				
Entries	216				
Mean	0.5233				
IN CONT					
Std Dev	0.8519				

Energy of particles reaching the PMT

MC FLUKA SIMULATION: Optic photons card activation

Released energy in the Air target

MC FLUKA SIMULATION: Optic photons card activation

The wallets are reflective at 90% (Teflon sheet from Thorelabs)

Optical Photons Fluence - FLUKA generated [# ph./(cm² primary)]

MC FLUKA SIMULATION: Optic photons card activation

The wallets are reflective at 90% (Teflon sheet from Thorelabs). Black configuration decreases the number of photons of a factor 100.

- The LIAC HWL shoots 10¹⁰ electrons with energy 6 MeV in a pulse 4µs long at a frequency of 10Hz.
- The first run was performed with the beam shooting straight at the center of the dosemeters (ref. up, abs. down).

- 1st question: can we observe in-beam/off-beam difference?
 - ► From sim.: (with 10¹⁰ el./pulse)

• **1st question**: can we observe in-beam/off-beam difference?

- **2rd question**: What if one of the PMTs is **farther** from the aperture?
 - ► From sim.: (with 10¹⁰ el./pulse)

MC FLUKA	IN BEAM	SHIFTED BEAM	RA
#opt.phot.	1,05E+08	7,06E+07	~

• **2rd question**: What if one of the PMTs is **farther** from the aperture?

- Image of the second second
 - From sim.: (with 10^{10} el./pulse)

MC FLUKA	REFLECTIVE	ABSORBER	RA
#opt.phot.	1,05E+08	1,05E+06	~1

3rd question: What difference do **reflective** and **absorber** make? $oldsymbol{O}$

- ► Note (1): In the simulation, the walls of
- ► Note (2): In real word only two faces of

DETECTOR	IN-BEAM [pC]	OFF-BEAM (10 cm) [pC]	OFF-BEAM/ IN-BEAM	SHIFTED (58 cm) [pC]	SHIFTED (33 cm) [pC]
REFLECTIVE TOP	180	4	2 10-2		
ABSORBER TOP	56	0.8	1.5 10-2	30	/
REFLECTIVE BOTTOM	208	16	7 10-2	113	SATURATE

- > We can see the IN beam from the OFF beam
- > The response of the detector is sensitive to position and geometry
- probably a not-reflective detector is a better choise.
- ► Filters study => to do..

> The study reflectivity/absorption with MC and data is coherent with expectancy..

Preliminary Conclusion with TUBONE

DETECTOR	IN-BEAM [pC]	OFF-BEAM (10 cm) [pC]	OFF-BEAM/ IN-BEAM	SHIFTED (58 cm) [pC]	SHIFTED (33 cm) [pC]
REFLECTIVE TOP	180	4	2 10-2		
ABSORBER TOP	56	0.8	1.5 10-2	30	/
REFLECTIVE BOTTOM	208	16	7 10-2	113	SATURATE

geometry is a better choice. \Box Filters study => to do...

We can see the IN beam from the OFF beam

The response of the detector is sensitive to position and

The study reflectivity/absorption with MC and data is coherent with expectancy.. probably a not-reflective detector

Expected photons

According to the detector we decide to implement.. SIT LIAC machine

(1):

- 0.04 ph x 10 cm x 0.1 x 10^10 (elet./pulse) ~ 4 10^8 ph
- ~ 8 10^7 ph.el
- ➡ PMT troppo dentro l'alone del fascio

* riflessione on/off

• 0.04 ph/cm x 5 cm x 0.005 (sottostima/sovrastima geometria*) x 10^{10} (elet./pulse) ~ 1 10^7 ph

• ~ 2 10^6 ph.el

L'applicatore produce troppo fondo che arriva ai PMT Senza applicatore siamo stati in grado di vedere l'IN/OUT beam

• 0.04 ph/cm x 2 cm x 0.003 x 10^{12*} (elet./pulse) ~ 2 10^8 ph • ~ 5 10^7 ph.el **PMT: H6524** →Senza applicatore *FLASH machine in 100 times more intense

Tubino@SIT: 05.07.2021 (dal futuro con < 3)

- We plan to take the FLASH beam..
- The inside is not reflective. Less saturation effects, less geometry dependence.

Vediamo se questa mano vi piace quanto l'altra..

Tubino@SIT: 05.07.2021 (dal futuro con < 3)

GAIN

- We plan to take the FLASH beam.
- The inside is not reflective. Less saturation effects, less geometry dependence.
- For the moment we just equalised the PMT response.
- "New".. less noice and more stable
- Test with UV Filters..

Figure 1: Typical Spectral Response

SUPPLY VOLTAGE (V)

Tubino@SIT: 05.07.2021 (dal futuro con < 3)

- We plan to take the FLASH beam..
- The inside is not reflective. Less saturation effects, less geometry dependence.
- For the moment we just equalised the PMT response..
- "New".. less noice and more stable
- Test with UV Filters..
- We plan to change the current of the beam and see if we can follow the

Matteo Pacíttí:

A parítà dí lunghezza dell'ímpulso possíamo varíare la corrente dí fascío da 73 mA fino a 130 mA. Considerando un ímpulso rettangolare dí durata 4 us, quíndí approssimando leggermente, andíamo da 1.8 x 10¹² elettroní a 2.9 x 10¹² elettroní.

Future prospective..

- I definitely find very 'romantic' that an empty detector can produce light. \bigcirc
- It is certainly true that this light can be correlated with the electron beam (on/off, shift, ...) \bigcirc
- We have to make the step further and go from a very 'qualitative measure' a a raw \bigcirc 'quantitative measure'.. and than decide what to do...
- The new geometry should help.. but it is not the best choice ever.. \bigcirc
 - => charge average study

 - => geometry optimisation

We still need to prove that we can correlate with the number of electrons.. !!

