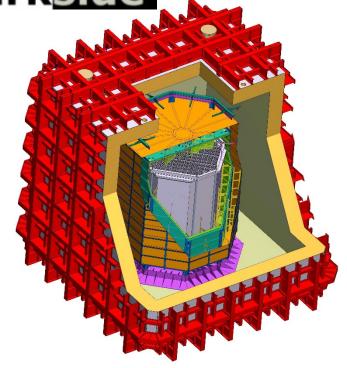
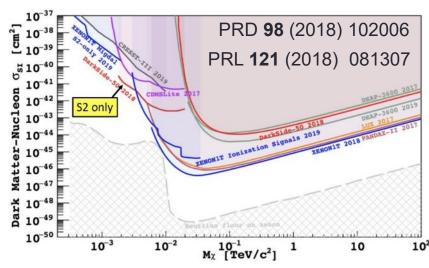


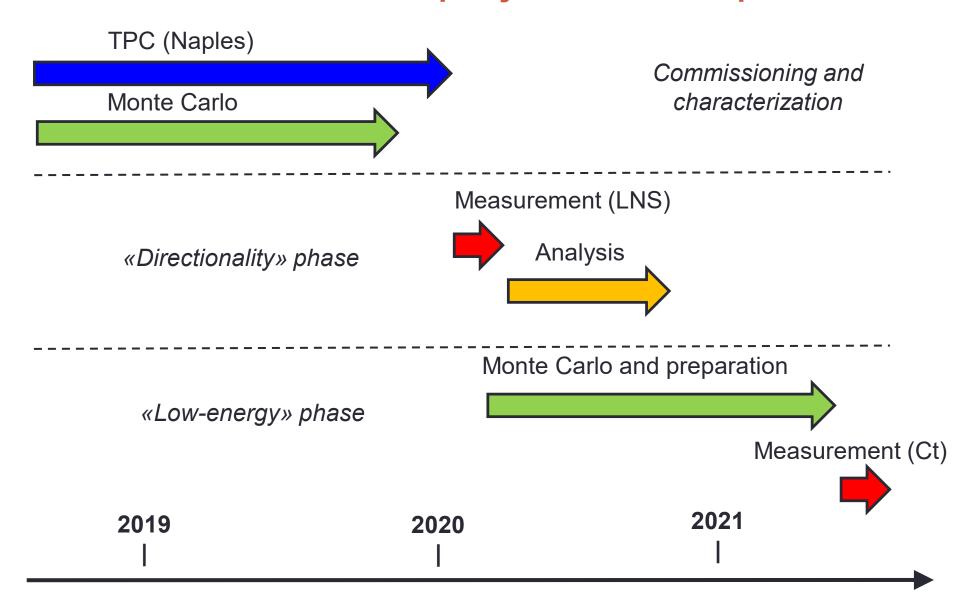
L. Pandola (LNS) on behalf of the ReD Working Group


Physics background


- Search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs)
 - WIMP is a favourite candidate, but there are many others
- <u>Signature</u>: low energy (< 100 keV) nuclear recoil produced by WIMP elastic scattering
 - Backgrounds: e- recoils, neutron-induced recoils
- Global effort worldwide:
 - Rates in the range from 10⁻¹ to 10⁻⁶ events / (kg·day)
 - next generation experiments should eventually reach exposures in the range of ktonday
 - Need very low background level (and underground site)

Physics background darkside

- DarkSide at Gran Sasso
 Laboratory, WIMPs using search
 using a dual-phase TPC with low radioactivity LAr
 - Operated a 50 kg TPC (DarkSide-50)
 - Next step: 30 ton LAr TPC (DarkSide-20k)
 - Novel light readout with SiPM
 - Getting ready for data in 2025, exposure O(100) ton yr
 - Expected sensitivity 10⁻⁴⁷ cm² @ M_W =1 TeV/c²
 - <u>Next-next step</u>: global worldwide effort (ARGO, 300 ton LAr)
- More sensitive to low-mass WIMP than Xe, due to the lighter target

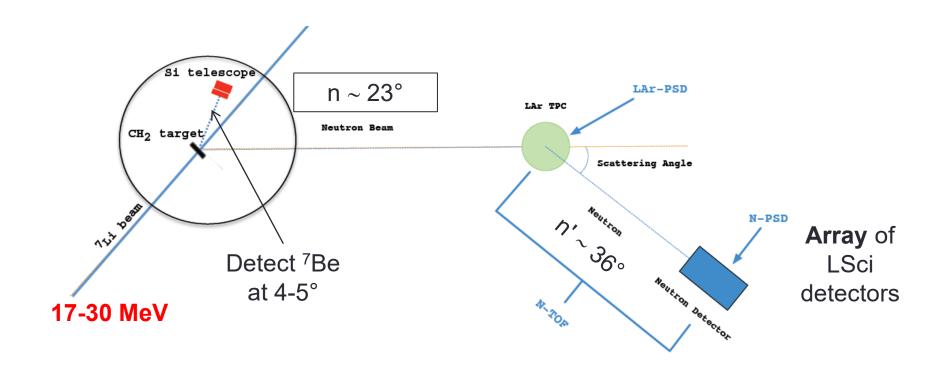


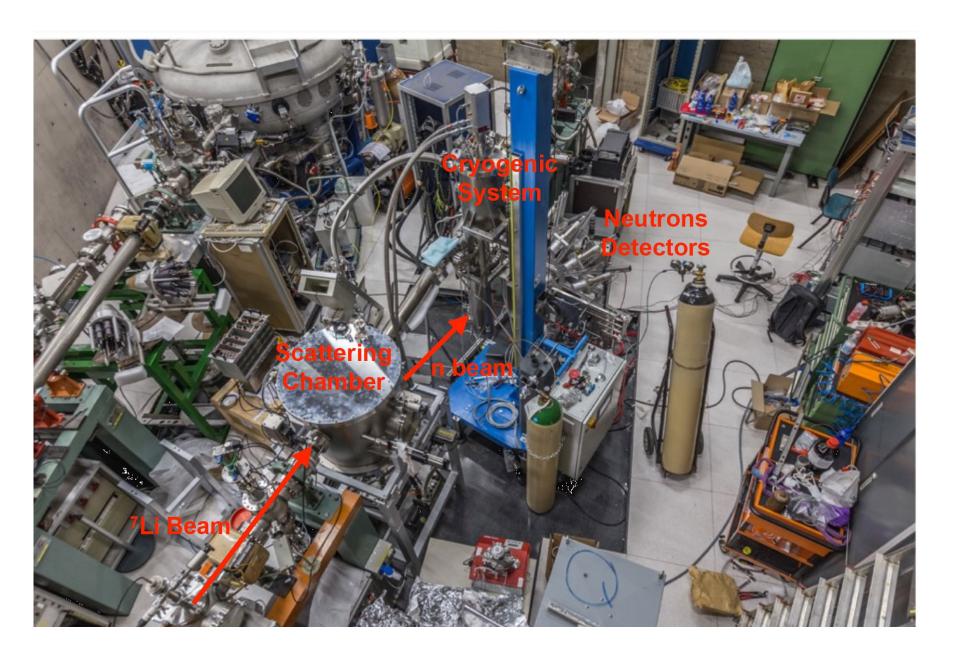
DS activities@ LNS

- Main involvement is in the ReD project, whose goals are:
 - demonstrate that a dual phase LAr TPC has a potential sensitivity to the direction of Ar recoil;
 - characterize the response of the LAr TPC to very low-energy recoils (< few keV) → recently became a hot topic (S2-only)
 - act as a test bench of the technical solutions for DarkSide-20k TPC
- Nuclear recoils of known directions can be produced by neutron elastic scattering
- Beam at LNS: we hosted the measurement by delivering a neutron beam via ⁷Li+p reaction and by taking care of the logistics; provide the ΔE/E Si Telescope
 - Beam run (tailored to directionality): done in February 2020 (⁷Li beam)
- During the beam stop:
 - run a dedicated calibration with a fission neutron source (²⁵²Cf) → focus on low-energy recoils
 - Cooperation with the DarkSide group @Sezione

Timeline of the ReD project – three phases

Phase 1 – Commissioning (Naples)

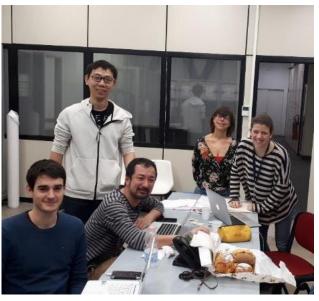

- TPC Commissioning (at INFN Naples)
- Key results:
 - System (w/ cold SiPM) stable for many months (< 1% rms in SER)
 - Light response good 9.80(21) PE/keV at ²⁴¹Am and stable (< 2%)
 - TPC performance (g1, g2, $\sigma_{S2/S1}$) appropriate for the directionality runs
 - g1 and g2, S1-S2 anti-correlation, fit of recombination model
- Paper available with the summary of results
 - arXiv 2106.13168 (June 24th)
 - submitted to Eur. Phys. J. C

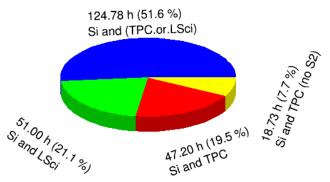

Eur. Phys. J. C manuscript No. (will be inserted by the editor)

Performance of the ReD TPC, a novel double-phase LAr detector with Silicon Photomultiplier Readout

ReD measurement@LNS - recap

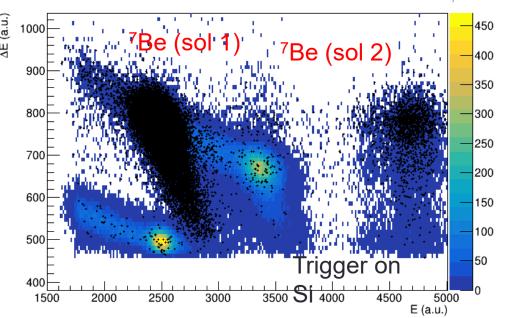
- Use a neutron beam produced via p(⁷Li,n)
 - TANDEM accelerator at LNS, Catania
- Detect the associate particle (⁷Be) and ToF to tag neutron energy event by event (fixed by kinematics)

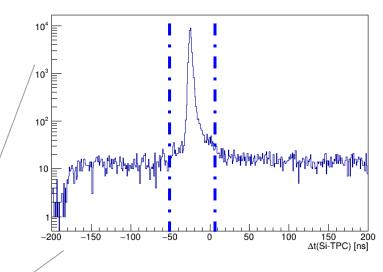


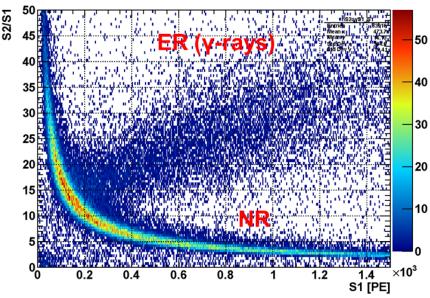


Phase 2— Directionality run (LNS)

- Neutron beam run at LNS, shortly before the lockdown (Feb 1st to Feb 14th)
- In total, 124 runs are selected for the final analysis
 - Total time: 241.7 h (= 10.07 days)
- Daily calibrations with laser and ²⁴¹Am
 - Special laser runs w/ source and beam on
- Data analysis finalized, under internal review
- Report results about directionality in a scientific paper
 - Submit abstracts and presents results (or at least appetizers) in the fall conferences






TPC-Si coincident events

- Successful tagging of neutron events in the TPC by using ⁷Be in the Si telescope
 - Events with a signal in the TPC
 - Correlated events + flat accidentals
 - Clear ER/NR discrimination
- Large sample of NR events

Δt TPC-Si

ReD run @ LNS

- Very clean identification of three-fold coincidences (Si ^ TPC ^ n-Spectrometer) events
 - based on: ⁷Be tagging, timing and possibly PSD (TPC and LSci)

90 degree

40 degree

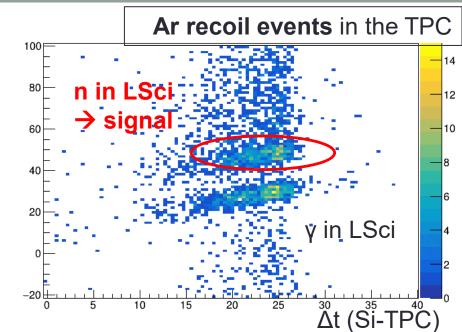
20 degree

90 degree

90 degree

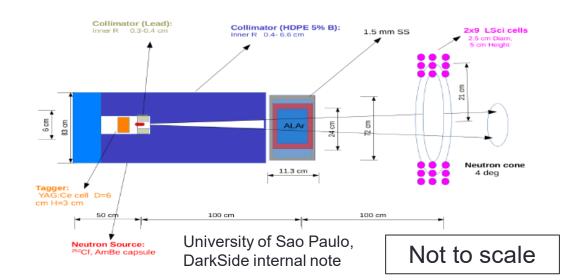
90 degree

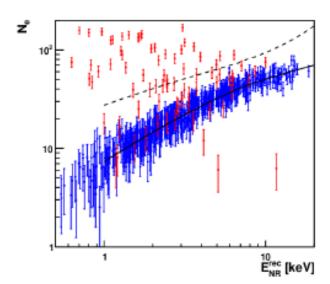
90 degree


40 degree

A RooPlot of "82"

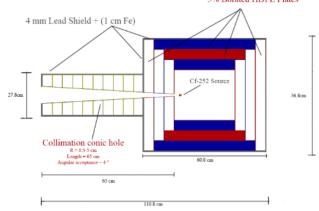
A RooPlot of "81"


A


 Statistical analysis (unbinned likelihood)

Phase 3 – Low-energy phase (INFN-Ct)

- Low-energy recoil measurements (< few keV) by using neutrons from a ²⁵²Cf fission source
 - Neutrons O(2 MeV), more appropriate for E_{rec} ~ few keV
 - Directionality not possible
 - Use close fission tagger (BaF₂) and time of flight
- Implement conceptual design from Sao Paulo group
 - Neutron spectrometer to detect neutrons scattered off-Ar re-designed
 - Use 1-inch plastic scintillators, instead of 3-inch liquid scintillators



Phase 3 – Low-energy phase

- ReD setup moved to INFN Sezione di Catania to continue the programme
- Plan 2-3 weeks of data taking with ²⁵²Cf and 4-6 weeks of background →fall of 2021
 - Expected O(1) cpm of triple-coincidences (1.5 MBq source)
- Sensitivity down to 2-5 keV_{NR}
 - Limited by accidental coincidences
 - Possible improvements but need bigger TPC and better layout
 - Application submitted for a PRIN
- Calibrate with ³⁷Ar and ^{83m}Kr before warm-up
 - Response to ER in the same energy range
 - Slipping to 2022

Preparation at INFN-Ct

- Refurbishment and equipment of the host site at INFN-Ct recently completed (with delays due to the COVID-19)
 - crane, LAN, power, RadSafety, SPP
- Hardware mostly available:
 - Shielding available (B-loaded PE, Pb, Fe), mostly assembled
 - 1.5 MBq ²⁵²Cf source delivered
 - Detectors of the neutron spectrometer (18 1inch EJ-276) delivered
 - Mechanics to be finalized and built ("in house", RM1&RM3). Funding available in 2021 ✓
 - Fission taggers: BaF (available in-house)
 - 83Rb/83mKr ordered, ³⁷Ar from ⁴⁰Ca(n,α)
- ReD is «parked» @ INFN-Ct, starting redeployment (starting from Jul 7th)
 - Cryogenic setup, slow control, DAQ

URANIA Facility

- The URANIA plant will extract and purify the underground Ar (low in ³⁹Ar) from the CO₂ wells at the Kinder Morgan Doe Canyon Facility, Colorado
 - Plant built at the Company site
 - 95% completed
- Expected production: 50 tons
 - To be purified and further depleted by distillation in the ARIA facility
- LNS actively involved in the design and construction of the plant (G. Schillaci)

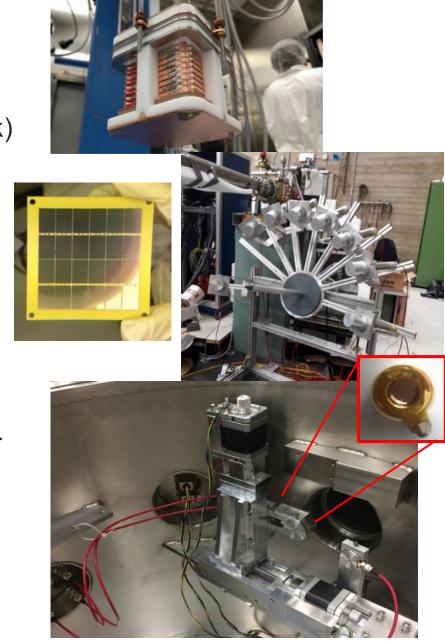
Attività e richieste 2022 – gruppo LNS

- Prosecuzione e supporto della presa dati con l'apparato ReD con sorgente di ²⁵²Cf, per la misura della risposta della TPC a bassissime energie:
 - Presa dati e coordinamento delle attività on-site
 - Sviluppo software e algoritmi per analisi dati
 - Coordinamento globale del progetto (L. Pandola, L1 manager)
- Realizzazione dell'impianto URANIA per l'estrazione di Ar depleto in ³⁹Ar in Doe-Canyon (Colorado)
- Realizzazione del criostato e sistema criogenico di DarkSide-20k, sala C LNGS (G. Schillaci, supporto RUP) → già in corso
- Possibile contributo all'attività sperimentale di Proto a Napoli
 - Da discutere ancora nell'ambito della Collaborazione DarkSide
- Richieste finanziarie molto limitate (ancora meno del 2021)
 - Missioni per meeting (sperabilmente!) e eventuale attività a Napoli
 - Metabolismo e consumi per le misure "low energy" del 2022

Richieste 2022 – gruppo LNS

TOTALE		1.5 FTE (1.5 nel 2021)
G. Schillaci	Tecnologo II	50%
L. Pandola	Ricercatore III	60% (RespLoc)
M. Gulino	Associato (UniKore)	40%

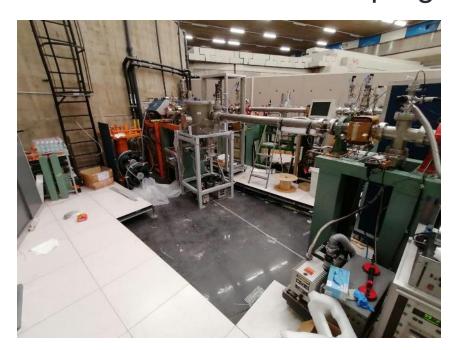
Prelin	ninary	
Consumo	 Metabolismo (liquidi criogenici, materiale di pulizia,) Materiali, lavorazioni meccaniche e supporto per calibrazioni ³⁷Ar/^{83m}Kr codice WBS item: DS- 180600 	5 k€
Missioni	 Contatti con altri gruppi e meeting di Collaborazione 	6 k€
TOTALE		11 k€


BACKUP

Conclusions

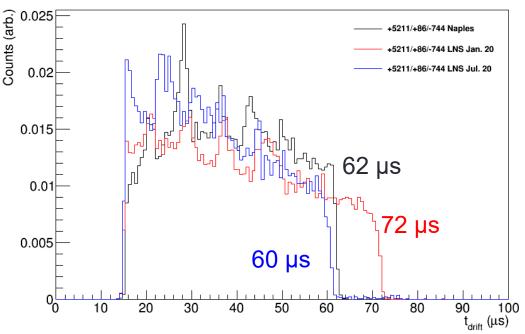
- ReD-phase1: commissioning and characterization of the TPC at INFN Naples
 - Work completed
 - Paper finalized, passed EB review and ready for submission
 - special author list under C2 rule
- ReD-phase2: «directionality» physics run with neutron beam at LNS Catania
 - Data taken in February 2020 (two-week beamtime), only one energy point (system tuned to ~70 keV_{nr})
 - Activities stopped at LNS due to the major civil works
 - Analysis work finalized and under internal review→ will produce a (Collaboration) paper draft
- Phase 1&2 data potentially usable for ancillary studies
 - Large neutron samples (NR/ER PSD, etc.)
- ReD-phase3: «low-energy» physics run with ²⁵²Cf neutrons at INFN Catania
 - Preparation for the measurement in progress (most hardware available)
 - Complemented with 83mKr and 37Ar
 - To be performed (measurement + bck) within 2021

The ingredients


- TPC
 - Light readout: 5x5 cm² SiPM (DS-20k)
 - 24x1cm² SiPM, 24 channel readout
 - 24x1cm² SiPM, 4 channel readout
- Liquid Scintillators (EJ-309)
 - Readout by PMTs
 - Featuring n/γ discrimination
 - Absolute calibration with ²⁵²Cf
- Si telescope
 - ΔE Si detector (20 μm), E Si detector (500 μm)
 - Placed at 5 deg, movable
- Targets
 - CH₂, 250-400 μg/cm²

Transfer of the ReD setup (Sep 2020)

- Major upgrade of the LNS accelerator facilities in 2021-2022
 - No beam (= no more directionality runs)
 - Civil works in the Labs
- ReD setup dismounted from the «80 deg» Hall (Sep 2020) and moved to INFN – Sezione di Catania to continue the programme



TPC test in July 2020


- Replace acrylic windows to debug the T_{drift} puzzle of February
 - Was not possible in January, as the spare windows were ITO-coated only on one side
 - Extra problems due to the fact that ITO was not coated on all six faces
- Short run (a few days), recirculation time not sufficient to achieve best purity... but drift time distribution (almost) consistent with Naples 2019.

Neutron spectrometer

- The neutron spectrometer must feature smaller detectors than the 3" LSci's used for ReDdirectionality
 - Being at low angle (to tag low-energy recoils), must improve energy resolution by a event-by-event tracing of neutrons, using 3D-capability of the TPC
 - Use organic plastic scintillators
 - Good timing and n/γ discrimination capability are highly welcome → EJ276 is a suitable choice
- Design: two arrays made by 3x3 1" detectors
 - Symmetrical deployment to control systematics due to alignment
 - Offer available from Scionix: ~1 k€/detector (PMT incl.)
- Monte Carlo simulations to finalize the position/arrangement
 - Keep some flexibility for the mechanics of the support structure

