
Best practices for securing containerized
applications

Andrea Ceccanti
INFN CNAF

Corso CCR “Docker e Orchestrazione di container”
June, 17th 2021

Docker images best practices

Containers can be secure
But care and attention is required!

A google search for “Docker container security best practices” yields severals
results. I will talk a bit about some of the key advice I found in the following
resources:

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

https://docs.docker.com/develop/dev-best-practices/

https://docs.docker.com/engine/security/

https://sysdig.com/blog/dockerfile-best-practices/

3

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/security/
https://sysdig.com/blog/dockerfile-best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/engine/security/
https://sysdig.com/blog/dockerfile-best-practices/

Use trusted base images
Always check the images you extend. Extend trusted, certified base images.

4

Update your images frequently
Use base images that are frequently updated, and rebuild yours on top of them.

As new security vulnerabilities are discovered continuously, it is a general security
best practice to stick to the latest security patches.

5

Reduce attack surface: keep images minimal
Use multi-stage builds and leverage minimal base images. If possible, use
distroless base images

6

FROM rust:1.41.0 as build-env
WORKDIR /app
ADD . /app
RUN cargo build --release

FROM gcr.io/distroless/cc
COPY --from=build-env /app/target/release/hello-world-distroless /
CMD [“./hello-world-distroless"]

https://github.com/GoogleContainerTools/distroless
https://github.com/GoogleContainerTools/distroless

Do not run your application as root
Do not run your application as root within a container

• always use the USER instruction in your Dockerfile

• Provide appropriate file system permissions in the locations where the process will be
reading or writing

7

FROM alpine:3.12
Create user and set ownership and permissions as required
RUN adduser -D myuser && chown -R myuser /myapp-data
... copy application files
USER myuser
ENTRYPOINT ["/myapp"]

Do not bind the user to a specific UID
Some platforms (e.g., Openshift) will use a random UID when running containers.

Use the tmp dir to write temporary data and make resources world readable

8

...
USER myuser
ENV APP_TMP_DATA=/tmp
ENTRYPOINT ["/myapp"]

Make executables root owned and non-writable
This will block the executing user from modifying existing binaries or scripts,
which could enable different attacks.

9

...
WORKDIR $APP_HOME
COPY --chown=app:app app-files/ /app
USER app
ENTRYPOINT /app/my-app-entrypoint.sh

Make executables root owned and non-writable
This will block the executing user from modifying existing binaries or scripts,
which could enable different attacks.

9

...
WORKDIR $APP_HOME
COPY --chown=app:app app-files/ /app
USER app
ENTRYPOINT /app/my-app-entrypoint.sh

⚠

Prevent confidential data leaks
Never put any secret or credentials in the Dockerfile instructions.

Be extra careful with files that get copied into the container. Even if a file is
removed in a later instruction in the Dockerfile, it can still be accessed on the
previous layers as it is not really removed, only “hidden” in the final filesystem.

Don’t include confidential information or configuration values that tie them to
some specific environment (i.e., production, staging, etc.).

10

Favour COPY over ADD
Both the ADD and COPY instructions provide similar functions in a Dockerfile.
However, COPY is more explicit.

Use COPY unless you really need the ADD functionality, like to add files from an
URL or from a tar file. COPY is more predictable and less error prone.

11

Understand the docker build context
Only include the minimal and necessary information in the docker build context.
Use the .dockerignore file, and use a dedicated folder for Docker image assets

12

docker build -t myimage . ⚠
docker build -t myimage assets/ 👍

Do not install unnecessary packages
To reduce complexity, dependencies, file sizes, and build times, avoid installing
extra or unnecessary packages just because they might be “nice to have.” For
example, you don’t need to include a text editor in a database image.

13

Decouple applications
Each container should have only one concern.

Decoupling applications into multiple containers makes it easier to scale
horizontally and reuse containers.

For instance, a web application stack might consist of three separate containers,
each with its own unique image, to manage the web application, database, and
an in-memory cache in a decoupled manner.

14

Minimize the number of layers
In recent Docker version, only the instructions RUN, COPY, ADD create layers.
Other instructions create temporary intermediate images, and do not increase
the size of the build. 

Where possible, use multi-stage builds, and only copy the artifacts you need
into the final image.

15

Continuously build your images
When you check in a change to source control or create a pull request, use a CI/
CD pipeline to automatically build and tag a Docker image and test it.

16

Properly tag your images
Follow a coherent and consistent tagging policy. Document your tagging policy
so that image users can easily understand it.

Container images are a way of packaging and releasing a piece of software.
Tagging the image lets users identify a specific version of your software in order
to download it. For this reason, tightly link the tagging system on container
images to the release policy of your software

Examples:

• Include a version number following semantic version in your tags

• Use the git commit SHA hash as a tag for your code

17

Use static image tags in production
Avoid “moving” tags like latest, the application could change without you being
aware of it and break your system, i.e. the main benefit of immutability of the
infrastructure for which we use containers are lost!

There’s also an image caching and scalability aspect: using fixed tags reduces
network traffic and can avoid hitting DockerHub download limits.

18

Scan images for vulnerabilities
DockerHub provides this service for Docker trusted images.

You can have a similar functionality on a local Harbor registry

19

https://goharbor.io/
https://goharbor.io/

