
Corso docker e orchestrazione di container - June 15-18, 2021

Apache Mesos
Basic concepts

Marica Antonacci (INFN Bari)
marica.antonacci@ba.infn.it

Corso docker e orchestrazione di container - June 15-18, 2021

Outline

● What is Mesos
○ Architecture
○ Main components overview

● Two-level scheduling and Resource isolation
● Running long-running services on a Mesos cluster with Marathon
● Executing jobs on a Mesos cluster with Chronos
● Use cases

2

Corso docker e orchestrazione di container - June 15-18, 2021

The birth of Mesos

“We wanted people to be able to program for the datacenter just like they program for their laptop”

 Benjamin Hindman, Apache Mesos PMC Chair

3

https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos adoption

4

Corso docker e orchestrazione di container - June 15-18, 2021

What is Mesos
Mesos has been described as a Datacenter Kernel as it provides a single unified view of node resources to software frameworks that wish to
consume them via APIs.

Mesos performs the role of an intelligent global level scheduler that can match a massive pool of hardware resources to distributed applications that
want to consume these resources.

Mesos aggregates all the resources into a large virtual pool using not just virtual machines and containers but primitives such as CPU, I/O and RAM.

It breaks applications into small units that can be assigned across this pool. Mesos also provides APIs in multiple languages to allow applications to
be built for it. Apache Spark, the most popular data processing engine, was built originally as a Mesos framework.

5

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos Architecture

There are 4 important components to run Mesos:

● Master: Coordinates the work and decides
which framework gets how many resources

● Zookeeper: Used as distributed storage,
enables the coordination of the masters

● Slave: A worker node which provides its
resources to run tasks of a framework

● Framework: Has a scheduler component
which decides where a task gets launched
and an executor which executes one or more
tasks at the Slave.

6

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos features

● Fault-tolerant replicated master using ZooKeeper
● Scalability to thousands of nodes
● Isolation between tasks with containers
● Multi-resource scheduling (memory and CPU/GPU aware)
● Java, Python and C++ APIs for developing new parallel applications
● Web UI for viewing cluster state

7

Corso docker e orchestrazione di container - June 15-18, 2021

Two level scheduling

8

Mesos defines a minimal interface that enables
efficient resource sharing across frameworks
and otherwise push control of task scheduling
and execution to the Frameworks

Corso docker e orchestrazione di container - June 15-18, 2021

Resource isolation

The allocation of resources to one framework/job or user should not have any unintended effects on the
running jobs.

Mesos provides various isolation mechanisms on slaves (containerizers) to provide an isolated environment
to run an executor and its tasks.

9

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos containerizers

Docker containerizer: This containerizer allows tasks to be run inside docker container

MESOS containerizer: This is the native Mesos containerizer solution. It uses Linux-specific
functionalities such as control cgroups and namespaces and allows tasks to be run with an array
of pluggable isolators provided by Mesos.

Nvidia GPU support is only available for tasks launched through the Mesos containerizer (i.e., no
support exists for launching GPU capable tasks through the Docker containerizer).

Note: from version 1.0 on, the Mesos containerizer supports running docker images natively!

10

Corso docker e orchestrazione di container - June 15-18, 2021

Long-running services on Mesos

11

Corso docker e orchestrazione di container - June 15-18, 2021

Marathon Framework

12

● Marathon is a framework used for running long-running services on Mesos
● Marathon is the equivalent of the service management system

○ in Linux, this is commonly referred to as the init system.
● Marathon deploys applications as long-running Mesos tasks, both in Linux

cgroups and Docker containers.
● It can be considered a private platform as a service (PaaS) on which to

deploy applications. Marathon does this by launching instances of an
application as long-lived Mesos tasks

Corso docker e orchestrazione di container - June 15-18, 2021

Orchestration with Marathon

1) Configuration/package management
○ making sure all the dependencies for a service are met and

the environment is configured properly for the service
before the service starts

2) Deployment
○ Deployment of a service can be complex if service depends

on other services and there are constraints about where the
service can be deployed

3) Service discovery & Load-balancing
○ where are the instances of a particular service running?

○ which instance should a given request go to?

13

Corso docker e orchestrazione di container - June 15-18, 2021

Marathon Web Interface

The Marathon web UI provides a convenient interface with Marathon.

Yet it is no longer actively maintained and therefore the usage of the Marathon REST API is
strongly recommended to access the latest Marathon features.

14

Corso docker e orchestrazione di container - June 15-18, 2021

Marathon REST APIs

Main endpoints:

15

https://mesosphere.github.io/marathon/api-console/index.html

https://mesosphere.github.io/marathon/api-console/index.html

Corso docker e orchestrazione di container - June 15-18, 2021

Running a simple dockerized service

16

A service is described in JSON format.

The id tag is the name of the service. It is displayed in the service list.

The instances tag tells Marathon that only one instance is needed. It can be
increased or decreased as needed later.

The cpus and mem tags are hints to Marathon as to what percentage of CPU
and the amount of RAM is needed. They do not actually set resource limits in
Docker. However, Marathon may kill tasks that use more than the allocated
resources. In this case, the application is requesting 25 percent of a CPU and
64 MB of RAM.

The container tag is where the Docker container is defined. The type tag
defines the Containerizer that will be used to run the Mesos task. In this case
is set to DOCKER.

The image is set in the image tag. This is the same image name that will be
passed to docker run.

Finally, the network tag is set to BRIDGE, which tells the Docker Engine to use
bridge networking and map containerPort 80 to the ephemeral hostPort
assigned dynamically.

{
 "id": "simple-nginx",
 "instances": 1,
 "cpus": 0.25,
 "mem": 64,
 "container": {
 "type": "DOCKER",
 "docker": {
 "image": "nginx:1.11",
 "network": "BRIDGE",
 "portMappings": [
 {
 "containerPort": 80,
 "hostPort": 0
 }
]
 }
 }
}

Corso docker e orchestrazione di container - June 15-18, 2021

Health checks and rolling upgrades

Marathon provides optional HTTP- and TCP-based health checks for each of the
instances of a particular application.

In the event that an instance starts failing its health checks - either by returning an
HTTP error code or by failing a TCP connection - the task will be reported as
unhealthy. After a certain number of failed health checks, Marathon will restart the
unhealthy task. The parameters of these health checks are all configurable.

These health checks also allow you to perform rolling upgrades of an application,
ensuring a minimum level of service, or capacity, so that new instances come up
healthy before the upgrade proceeds.

Combine these features with dynamically configured load balancers, and
Marathon allows for zero-downtime deployments of new versions of applications.

17

Corso docker e orchestrazione di container - June 15-18, 2021

Examples of health checks

18

Corso docker e orchestrazione di container - June 15-18, 2021

URIs field & Mesos fetcher

The Mesos fetcher is a way by which resources can be downloaded in the task
sandbox directory while preparing the task execution.

The Mesos fetcher natively supports the FTP and HTTP protocols, and is also able
to copy over files from a filesystem. It also supports all Hadoop client protocols
such as Amazon Simple Storage Service (S3), Hadoop distributed Filesystem (
HDFS), and so on.

If you specify an archive file (for example, zip or tar.gz) in the URIs field, the Mesos
fetcher will automatically extract the archive for you in the sandbox.

The downloaded URIs can also be cached in a specified directory for reuse.

19

Corso docker e orchestrazione di container - June 15-18, 2021

Running stateful application on Marathon

Regardless of the lifespan of the container the data should always persist.

The container could be scheduled to run on any node in the cluster, meaning
persistent data may need to be accessed from any node.

Marathon supports stateful applications/services by:

● using local persistent volumes
○ Failure of a node? data is lost

● using external volumes (EBS, Cinder, etc.)

20

Corso docker e orchestrazione di container - June 15-18, 2021

Docker volume driver isolator

21

The docker/volume isolator interacts with Docker
volume plugins using dvdcli, an open-source
command line tool from EMC.

Corso docker e orchestrazione di container - June 15-18, 2021

Rex-Ray driver

● Provides a vendor agnostic storage orchestration engine
○ Amazon EBS, Ceph, Openstack Cinder, EMC ScaleIO, GCE, XtremIO, etc.

22

 "volumes": [
 {
 "external": {
 "name": "mysql-rexray-volume",
 "provider": "dvdi",
 "options": {
 "dvdi/driver": "rexray"
 }
 },
 "containerPath": "/var/lib/mysql",
 "mode": "RW"
 }
]

Corso docker e orchestrazione di container - June 15-18, 2021

Marathon networking

Marathon has three networking modes:

● host: each application shares the network namespace of the Mesos agent process,
typically the host network namespace.

● container/bridge: each application should be allocated its own network namespace
and IP address; Mesos Container Network Interface (CNI) provides a special
mesos-bridge that application containers are attached to. When using the Docker
containerizer, this translates to the Docker “default bridge” network.

● container: each application should be allocated its own network namespace and IP
address; Mesos network isolators are responsible for providing backend support for
this. When using the Docker containerizer, this translates to a Docker “user”
network.

23

Corso docker e orchestrazione di container - June 15-18, 2021

Networking mode “host” - example

{
 "id": "httpi",
 "networks": [{ "mode": "host" }
],
 "portDefinitions": [
 {"port": 0, "name": "http"}
],
 "container": {
 "type": "DOCKER",
 "docker": {
 "image":
"dcoslabs/httpi:latest",
 "forcePullImage": true
 }
 },
 "instances": 1,
 "cpus": 0.1,
 "mem": 32
}

24

In this example, we have a single port
definition labelled ‘http’ and it’s set to a
value of 0, meaning Marathon will
choose it on our behalf.

The application takes an environment
variable that’s set for us by Marathon
called PORT_HTTP, as named under the
portDefinitions section. This is passed
to the small Golang application and
tells it to listen on the value specified in
that environment variable

Corso docker e orchestrazione di container - June 15-18, 2021

Networking mode “container/bridge” - example

{
 "id": "db",
 "instances": 1,
 "cpus": 0.1,
 "mem": 128.0,
 "disk": 0.0,
 "container": {
 "type": "DOCKER",
 "docker": {
 "image": "redis:3.0.3",
 "network": "BRIDGE",
 "portMappings": [
 { "containerPort": 6379,
 "hostPort": 0, "protocol": "tcp" }
]
 }
 }
}

25

In this example, the service
inside the container is running
on port 6379 and a pseudo
random port on the host will be
setup enabling bridge/NAT
communication to the container
port.

Corso docker e orchestrazione di container - June 15-18, 2021

Networking mode “container” - example

The “container” mode is the most advanced scenario: a
dedicated IP address is allocated to each container.

Containers get their own Linux networking namespace (and
thus a dedicated network stack), and connectivity is
managed by the underlying software-defined networking
(SDN) provider technology.

For example, Calico provides 3rd-party CNI plugin that
works out-of-the-box with Mesos CNI.

Calico takes a pure Layer-3 approach to networking,
allocating a unique, routable IP address to each Meso task.

26

{
 "id": "/calico-docker",
 "instances": 1,
 "container": {
 "type": "DOCKER",
 "volumes": [],
 "docker": {
 "image": "mesosphere/id-server:2.1.0"
 },
 "portMappings": []
 },
 "cpus": 0.1,
 "mem": 128,
 "requirePorts": false,
 "networks": [
 {
 "mode": "container",
 "name": "calico"
 }
],
 "healthChecks": [],
 "fetch": [],
 "constraints": []
}

Corso docker e orchestrazione di container - June 15-18, 2021

Service Discovery with Mesos-DNS

Mesos-DNS is a stateless service that allows services running in Mesos to find
each other through DNS.

It periodically queries the Mesos master(s), retrieves the state of all running tasks
from all running frameworks, and generates DNS records for these tasks:

● DNS A records associate a host name to IPs
● DNS SRV records associate services to IPs and Ports

Applications and services running on Mesos slaves can discover the IP addresses
and ports of other applications they depend upon by issuing DNS lookup requests
or by issuing HTTP request through a REST API.

27

Corso docker e orchestrazione di container - June 15-18, 2021

Service Load-Balancing with Marathon-LB

Marathon load balancer (Marathon-LB) is a proxy server and load balancer for TCP, HTTP,
and HTTPS requests based on HAProxy open-source software.

Marathon-lb subscribes to Marathon's event bus and updates the HAProxy configuration
in real time.

28

● Services are exposed on their service port as
defined in their Marathon definition.

● Apps are only exposed on LBs which have the
same LB tag (or group) as defined in the
Marathon app's labels (using
HAPROXY_GROUP). HAProxy parameters can be
tuned by specifying labels in your app.

Furthermore, Marathon-lb provides support for TLS/SSL and Virtual Hosts

Corso docker e orchestrazione di container - June 15-18, 2021

Marathon-LB topologies

29

Marathon-LB as
cluster-edge load balancer

Marathon-LB for internal
and external requests

Corso docker e orchestrazione di container - June 15-18, 2021

Executing jobs on Mesos

30

Corso docker e orchestrazione di container - June 15-18, 2021

Chronos Framework

31

Chronos can be considered as a time-based job scheduler, such as cron in the
typical Unix environment.

Chronos is distributed and fully fault-tolerant, and it runs on top of Apache
Mesos.

It was originally developed at Airbnb to handle its complex data analysis pipelines

Chronos allows you to run shell scripts and is also natively able to schedule jobs
that run inside Docker containers.

Moreover it supports dependencies and retries.

Corso docker e orchestrazione di container - June 15-18, 2021

Chronos web UI

Chronos comes with a Web UI in which you can see the job status, statistics of the
job’s history, job configurations, and retries.

32

Corso docker e orchestrazione di container - June 15-18, 2021

REST API

33

https://mesos.github.io/chronos/docs/api.html

https://mesos.github.io/chronos/docs/api.html

Corso docker e orchestrazione di container - June 15-18, 2021

Chronos simple job definition
{
 "schedule": "R/2021-06-15T22:57:59Z/PT24H",
 "name": "sleep-job",
 "description": "Sleep for 60 seconds and return.",
 "cpus": 0.5,
 "mem": 256,
 "disk": 500,
 "command": "sleep 60",
 "retries": 2
}

34

{
 "schedule": "R/2021-06-15T17:22:00Z/PT2M",
 "name": "dockerjob",
 "container": {
 "type": "DOCKER",
 "image": "ubuntu:latest",
 "network": "BRIDGE",
 "volumes": [
 {
 "containerPath": "/var/log/",
 "hostPath": "/logs/",
 "mode": "RW"
 }
]
 },
 "cpus": "0.5",
 "mem": "512",
 "command": "while sleep 10; do date =u %T; done"
}

POST /v1/scheduler/iso8601

Corso docker e orchestrazione di container - June 15-18, 2021

Dependency-based jobs

In Chronos, dependency-based jobs don’t contain a schedule field, but instead
specify one or more parent jobs (using the parents field) that must complete
before that job will run.

35

POST /v1/scheduler/dependency

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos Use-cases

36

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos @ Netflix

37

● Mantis: a reactive stream processing platform. Netflix created this project for
its engineering teams to get access to real-time events and build applications
on top of them.
○ Mantis covers varied use cases including real-time dashboarding, alerting, anomaly detection,

metric generation, and ad-hoc interactive exploration of streaming data
● Titus: a Docker container job management and execution platform.

○ Titus uses a master to assign resources from Mesos agents. Titus provides integration into
the Netflix microservices and AWS ecosystem, including integrations for service discovery,
software-based load balancing, monitoring, and Netflix’s CI/CD pipeline, Spinnaker.

● Meson: a general-purpose workflow orchestration and scheduling framework
that Netflix built to manage machine learning pipelines.

● Fenzo: a scheduler Java library for Apache Mesos frameworks that supports
plugins for scheduling optimizations and facilitates cluster autoscaling.

https://netflixtechblog.com/distributed-resource-scheduling-with-apache-mesos-32bd9eb4ca38

https://github.com/Netflix/mantis
https://github.com/Netflix/titus
https://github.com/Netflix/Fenzo
https://netflixtechblog.com/distributed-resource-scheduling-with-apache-mesos-32bd9eb4ca38

Corso docker e orchestrazione di container - June 15-18, 2021

INDIGO PaaS & Mesos

The PaaS Orchestrator interacts via REST API with
● Marathon to deploy, monitor and manage Long-Running services, ensuring that they are always up and running.
● Chronos to run user applications (jobs), taking care of fetching input data, handling dependencies among jobs, rescheduling failed jobs.

38

The INDIGO PaaS is able to perform TOSCA deployment on Mesos clusters.

Corso docker e orchestrazione di container - June 15-18, 2021

Mesosphere DC/OS

From https://d2iq.com/products/dcos:
End-of-life date for DC/OS: October 31, 2021
It will be replaced by the D2iQ Kubernetes Platform (DKP).
<<Why? Kubernetes has now achieved a level of capability that only DC/OS could formerly provide and is now evolving and
improving far faster (as is true of its supporting ecosystem)>>

39

https://d2iq.com/products/dcos

Corso docker e orchestrazione di container - June 15-18, 2021

Mesos - Hands-on
https://maricaantonacci.github.io/mesos-tutorial/

40

https://maricaantonacci.github.io/mesos-tutorial/

Corso docker e orchestrazione di container - June 15-18, 2021

References & credits

41

http://mesos.apache.org/

https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf

https://mesosphere.github.io/marathon/

https://mesos.github.io/chronos/

https://dcos.io/

http://mesos.apache.org/
https://people.eecs.berkeley.edu/~alig/papers/mesos.pdf
https://mesosphere.github.io/marathon/
https://mesos.github.io/chronos/
https://dcos.io/

