
Corso docker e orchestrazione di container

Multi-Container Application
Basic concepts

Roberto Valentini (INFN Bari)
roberto.valentini@ba.infn.it

Corso docker e orchestrazione di container

Outline

● Multi-Container Application
○ Why
○ Communication
○ Docker CLI

● Docker-compose
○ Services
○ Volume, Network and Dependencies
○ CLI

● References

2

Corso docker e orchestrazione di container

Multi-Container Application: Why

The correct choice is to containerize every service individually.

This because you want for example:
● Update incompatible library
● Update one of the service
● Scale your service independently

3

At some time we need to use multiple service for our application
Example add a database to a website.

Remember that containers, by default, run in isolation and don’t know anything about other processes or
containers.

Corso docker e orchestrazione di container

Multi-Container Application: Comunication

Bridge network can be used when multiple containers are
running in standard mode and need to communicate with each
other.
We can use dedicated network per Multi-Container Application.

4

If two containers are on the same network, they can talk to each other.

If they aren’t, they can’t.

Corso docker e orchestrazione di container

Multi-Container Application: Docker CLI

For running a Multi-container application like a phpmyadmin we can use for example this
command in docker cli.

To start, stop and restart the application we need to act on both container.

In a complex application this need more effort.

5

docker run -d \

 --network phpmyadmin_net --network-alias db \

 -v db-data:/var/lib/mysql \

 -e MYSQL_ROOT_PASSWORD=s3cret \

 -e MYSQL_USER=phpma \

 -e MYSQL_PASSWORD=s3cret \

 mariadb:10.3

docker run -d \

 --network phpmyadmin_net --network-alias phpmyadmin \

 -p 8080:80 \

 phpmyadmin/phpmyadmin

Corso docker e orchestrazione di container

Docker-Compose

6

Docker Compose is a tool to help define and share
multi-container applications.
With Compose, we can create a YAML file to define the
services and with a single command, can spin everything up
or tear it all down.

These YAML rules, both human-readable and
machine-optimized, provide us an effective way to
snapshot the whole project in a few lines.

Almost every rule replaces a specific Docker command so
that in the end we just need to run: docker-compose up

version: "3.7"
services:
 phpmyadmin:
 image: phpmyadmin/phpmyadmin
 ports:
 - 8080:80
 network:
 - phpmyadmin_net
 db:
 image: mariadb:10.3
 expose:
 - 3306
 environment:
 "MYSQL_ROOT_PASSWORD": "s3cret"
 "MYSQL_USER": "phpma"
 "MYSQL_PASSWORD": "s3cret"
 volumes:
 - db-data:/var/lib/mysql
 networks:
 - phpmyadmin_net

volumes:
 db-data:

networks:
 phpmyadmin_net: {}

Phpmyadmin compose example

https://docs.docker.com/compose/
https://en.wikipedia.org/wiki/YAML

Corso docker e orchestrazione di container

Docker-Compose: Services

7

First of all we need to define our Multi-Container Application Services.
Every services was a component of our application and can be based
on different image.
Alternatively to use a registry image we can build image from
Dockerfile.

Now we can customize the container like we do on cli
● set environment variable or file
● expose port
● set restart policy
● map volume
● map port
● ecc

services:
 phpmyadmin:
 image: phpmyadmin/phpmyadmin
 db:
 image: mariadb:10.3

 phpmyadmin:
 image: phpmyadmin/phpmyadmin
 ports:
 - 8080:80
 db:
 image: mariadb:10.3
 expose:
 - 3306
 environment:
 "MYSQL_ROOT_PASSWORD": "s3cret"
 "MYSQL_USER": "phpma"
 "MYSQL_PASSWORD": "s3cret"

Corso docker e orchestrazione di container

Docker-Compose: Volume, Network and Dependencies

8

For persistent data we can define a volume and map it into the
container.
Alternatively we can map local filesystem path to container path.

 image: mariadb:10.3
 volumes:
 - db-data:/var/lib/mysql

volumes:
 db-data:

 image: mariadb:10.3
 networks:
 - phpmyadmin_net

volumes:
 db-data:

networks:
 phpmyadmin_net: {}

By default Compose sets up a single network for your app.
You can explicitly define the network name.
Each container for a service is both reachable by other containers
on that network, and discoverable by them at a hostname
identical to the container name.

In a environment where one service depends on another, we can define
this dependencies to force docker-compose to initialize the
environment with the correct sequence.

 phpmyadmin:
 image: phpmyadmin/phpmyadmin
 depends_on:

- db

Corso docker e orchestrazione di container

Docker-Compose: CLI

Now the YAML describe out application.

We can use docker-compose command line interface to manage the application.

9

With docker-compose up we can initialize and start our environment

With docker-compose start we can start our already created environment

With docker-compose stop we can stop our already created environment

With docker-compose down we can stop and destroy our environment

With docker-compose restart we can start our already created environment

Corso docker e orchestrazione di container

Handson link

https://baltig.infn.it/rvalentini/handson-docker-comopse

10

https://baltig.infn.it/rvalentini/handson-docker-comopse

Corso docker e orchestrazione di container

References

● https://docs.docker.com/compose/
● https://en.wikipedia.org/wiki/YAML
● https://docs.docker.com/compose/reference/
● https://docs.docker.com/get-started/08_using_compose/

11

https://docs.docker.com/compose/
https://en.wikipedia.org/wiki/YAML
https://docs.docker.com/compose/reference/
https://docs.docker.com/get-started/08_using_compose/

