
Corso docker e orchestrazione di container - June 15-18, 2021

Docker - part 1
Basic concepts

Marica Antonacci (INFN Bari)
marica.antonacci@ba.infn.it



Corso docker e orchestrazione di container - June 15-18, 2021

Outline

● Containers - brief recap
● Docker architecture
● Docker main components

○ Images
○ Containers
○ Registries

● Data management
○ Storage drivers
○ Volumes and bind-mounts
○ Volume plugins

● Networking
● Docker CLI & GUI
● Hands-on part 1 - overview
● References

2



Corso docker e orchestrazione di container - June 15-18, 2021

Virtual machines vs Containers

3



Corso docker e orchestrazione di container - June 15-18, 2021

Containers = combination of namespaces & cgroups

4



Corso docker e orchestrazione di container - June 15-18, 2021

Restricting visibility: Namespaces

Linux namespaces: It is a feature of Linux kernel to 
isolate resources from each other. This allows one set of 
Linux processes to see one group of resources while 
allowing another set of Linux processes to see a different 
group of resources. 

There are several kinds of namespaces in Linux: Mount 
(mnt), Process ID (PID), Network (net), User ID (user), 
Control group (cgroup), and Interprocess Communication 
(IPC). 

For example, two processes in two different mounted 
namespaces may have different views of what the 
mounted root file system is. Each container can be 
associated with a specific set of namespaces, and these 
namespaces are used inside these containers only.

5



Corso docker e orchestrazione di container - June 15-18, 2021

Restricting usage: Control groups

cgroups provide an effective mechanism for 
resource limitation. 

With cgroups, you can control and manage 
system resources (CPU, Memory, Networking, 
...) per Linux process, increasing overall 
resource utilization efficiency. 

Cgroups allow to control resource utilization per 
container.

6



Corso docker e orchestrazione di container - June 15-18, 2021

Docker architecture

7

Docker works on a client-server architecture:

● a server with a long-running daemon 
process dockerd.

● APIs which specify interfaces that 
programs can use to talk to and instruct 
the Docker daemon.

● A command line interface (CLI) client 
docker.

Docker is an open source platform for building, deploying, and managing containerized 
applications



Corso docker e orchestrazione di container - June 15-18, 2021

docker, containerd, runc

When you run a container with docker, you’re actually running it 
through the Docker daemon, containerd, and then runc.

● containerd is an industry standard high-level runtime for 
containers. It's main responsibility is to maintain the 
container's lifecycle (create/update/stop/restart or delete). 

● runc is the runtime specification given by OCI (Open 
Container Initiative) for running containers, interacting with 
existing low-level Linux features, like namespaces and 
control groups. 
○ after the creation of the container runc exits and the lifecycle of the 

container is managed by the shim(*) process (that becomes parent of 
the container).

8

(*) In tech terms, a shim is a component in a software system, which acts as a bridge between different APIs, or as a compatibility layer. A 
shim is sometimes added when you want to use a third-party component, but you need a little bit of glue code to make it work.



Corso docker e orchestrazione di container - June 15-18, 2021

Docker & Kubernetes

Kubernetes is deprecating support for Docker as a container runtime 
starting with Kubernetes version 1.20

Kubernetes works with all container runtimes that implement a standard 
known as the Container Runtime Interface (CRI). This is essentially a 
standard way of communicating between Kubernetes and the container 
runtime, and any runtime that supports this standard automatically works 
with Kubernetes.

Docker does not implement the Container Runtime Interface (CRI). In the 
past, there weren’t as many good options for container runtimes, and 
Kubernetes implemented the Docker shim, an additional layer to serve as an 
interface between Kubernetes and Docker. 

Now, however, there are plenty of runtimes available that implement the CRI, 
and it no longer makes sense for Kubernetes to maintain special support for 
Docker.

9



Corso docker e orchestrazione di container - June 15-18, 2021

Docker main components 

● Docker containers: Isolated user-space environments running the same or 
different applications and sharing the same host OS. Containers are created 
from Docker images.

● Docker images: Docker templates that include application libraries and 
applications. Images are used to create containers and you can bring up 
containers immediately. You can create and update your own custom images 
as well as download build images from Docker's public registry.

● Docker registries: This is an images store. Docker registries can be public or 
private, meaning that you can work with images available over the internet or 
create your own registry for internal purposes. One popular public Docker 
registry is Docker Hub.

10

https://hub.docker.com/


Corso docker e orchestrazione di container - June 15-18, 2021

What is a docker image?

Images are multi-layered self-contained files that act as the template for creating 
containers. They are like a frozen, read-only copy of a container. 

In the past, different container engines had different image formats. But later on, 
the Open Container Initiative (OCI) defined a standard specification for container 
images which is complied by the major containerization engines out there. This 
means that an image built with Docker can be used with another runtime like 
Podman.

Images can be exchanged through registries. 

11



Corso docker e orchestrazione di container - June 15-18, 2021

Docker registry

An image registry is a centralized place where you can upload your images and can also 
download images created by others. 

Docker Hub is the default public registry for Docker. Another very popular image registry is 
Quay by Red Hat.

12



Corso docker e orchestrazione di container - June 15-18, 2021

Docker image layers

● A Docker Image consists of read-only layers 
built on top of each other. 

● Docker uses the Union File System (UFS) to 
build an image. 

● The image is shared across containers.
● Each time Docker launches a container from 

an image, it adds a thin writable layer, known 
as the container layer, which stores all 
changes to the container throughout its 
runtime.

13



Corso docker e orchestrazione di container - June 15-18, 2021

Docker image vs container

Each container has its own writable 
container layer, and all changes are 
stored in this container layer.

Multiple containers can share access to 
the same underlying image and yet have 
their own data state.

When the container is deleted, the 
writable layer is also deleted. The 
underlying image remains unchanged.

14



Corso docker e orchestrazione di container - June 15-18, 2021

Copy-On-Write mechanism

15

COW is a standard UNIX pattern that provides a single shared copy of some data until the 
data is modified.

Docker makes use of copy-on-write technology with both images and containers. This 
CoW strategy optimizes both image disk space usage and the performance of container 
start times. At start time, Docker only has to create the thin writable layer for each 
container.

Containers that write a lot of data consume more space than containers that do not. This 
is because most write operations consume new space in the container’s thin writable top 
layer.

Note: for write-heavy applications, you should not store the data in the container. Instead, 
use Docker volumes, which are independent of the running container and are designed to 
be efficient for I/O. In addition, volumes can be shared among containers and do not 
increase the size of your container’s writable layer. (Source: Docker docs)

https://docs.docker.com/storage/storagedriver/


Corso docker e orchestrazione di container - June 15-18, 2021

Docker storage drivers

Storage drivers allow you to create data in the writable layer of your container. The files won’t be persisted 
after the container is deleted, and both read and write speeds are lower than native file system performance.

Docker supports the following storage drivers:

● overlay2 is the preferred storage driver, for all currently supported Linux distributions, and requires no extra configuration.
● aufs was the preferred storage driver for Docker 18.06 and older, when running on Ubuntu 14.04 on kernel 3.13 which had no support for 

overlay2.
● fuse-overlayfs is preferred only for running Rootless Docker on a host that does not provide support for rootless overlay2. On Ubuntu and 

Debian 10, the fuse-overlayfs driver does not need to be used overlay2 works even in rootless mode. 
● devicemapper is supported, but requires direct-lvm for production environments, because loopback-lvm, while zero-configuration, has very 

poor performance. devicemapper was the recommended storage driver for CentOS and RHEL, as their kernel version did not support overlay2. 
However, current versions of CentOS and RHEL now have support for overlay2, which is now the recommended driver.

● The btrfs and zfs storage drivers are used if they are the backing filesystem (the filesystem of the host on which Docker is installed). These 
filesystems allow for advanced options, such as creating “snapshots”, but require more maintenance and setup. Each of these relies on the 
backing filesystem being configured correctly.

● The vfs storage driver is intended for testing purposes, and for situations where no copy-on-write filesystem can be used. Performance of this 
storage driver is poor, and is not generally recommended for production use.

16

More info at https://docs.docker.com/storage/storagedriver/select-storage-driver/

https://docs.docker.com/storage/storagedriver/select-storage-driver/


Corso docker e orchestrazione di container - June 15-18, 2021

Persist data with volumes

● volumes are stored in a part of the host filesystem which is managed by Docker 
(/var/lib/docker/volumes/ on Linux). Non-Docker processes should not modify this part of 
the filesystem. Volumes are the best way to persist data in Docker.

● bind mounts may be stored anywhere on the host system. They may even be important 
system files or directories. Non-Docker processes on the Docker host or a Docker container 
can modify them at any time.

● tmpfs mounts are stored in the host system’s memory only, and are never written to the 
host system’s filesystem

17

Docker provides the following options for 
containers to store files in the host machine, so 
that the files are persisted even after the 
container stops
❖ volumes
❖ bind mounts
❖ tmpfs 



Corso docker e orchestrazione di container - June 15-18, 2021

Docker volume plugins

Volumes also support the use of volume drivers, which allow you to store your 
data on remote hosts or cloud providers, among other possibilities.

● Extend the functionality of the Docker Engine
● Use the extensible Docker plugin API
● Allows an end-user to consume existing storage and its functionality
● Create Docker storage volumes that are linked to containers lifecycle (can be 

persisted afterwards if needed)

18

More details: https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins

https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins


Corso docker e orchestrazione di container - June 15-18, 2021

Volume plugin workflow

19



Corso docker e orchestrazione di container - June 15-18, 2021

Plugin benefits

Data-intensive applications: Volume plugins expose specialized functionality in 
storage providers that can be utilised for data–intensive workloads.

Data migration: Volume plugins make it easy to move data across hosts in the 
form of snapshots (e.g. enable migration of production databases from one host 
to another with minimum downtime..)

Stateful application failover: Ability to have volumes that can be easily moved and 
re-attached, allowing easy failover to new machines/instances and re-attaching of 
data volumes.

20



Corso docker e orchestrazione di container - June 15-18, 2021

Docker networking

● bridge: the default networking driver in Docker. This can be used 
when multiple containers are running in standard mode and need 
to communicate with each other

● host: removes the network isolation completely. Any container 
running under a host network is basically attached to the network 
of the host system. Host mode networking can be useful to 
optimize performance, and in situations where a container needs 
to handle a large range of ports, as it does not require network 
address translation (NAT), and no “userland-proxy” is created for 
each port

● none: this driver disables networking for containers altogether
● overlay: this is used for connecting multiple Docker daemons 

across computers
● macvlan: it allows assignment of MAC addresses to containers, 

making them function like physical devices in a network

21

A network in Docker is another logical object like a container and image.

By default Docker has the following networking drivers: 



Corso docker e orchestrazione di container - June 15-18, 2021

Docker cli
$ docker help

22

https://docs.docker.com/engine/reference/commandline/cli/

https://docs.docker.com/engine/reference/commandline/cli/


Corso docker e orchestrazione di container - June 15-18, 2021

Commands to manage docker objects

23



Corso docker e orchestrazione di container - June 15-18, 2021

Miscellaneous commands

● docker ps: list running containers 
○ -a to list also stopped containers
○ -s to show container sizes

● docker stats: display container(s) usage statistics
● docker system df: show docker disk usage
● docker system prune: remove unused data

24



Corso docker e orchestrazione di container - June 15-18, 2021

Docker Graphical Interface
Portainer is a lightweight management UI which allows you to easily manage your different Docker environments.

The tool, which is compatible with the standalone Docker engine and with Docker Swarm, is simple to both use and 
deploy, being available as a Docker container itself. It can be used both on the local machine as well as a remote 
Docker GUI.

Portainer allows you to manage all your Docker resources (containers, images, volumes, networks and more)

25

For more details: https://documentation.portainer.io/

https://documentation.portainer.io/


Corso docker e orchestrazione di container - June 15-18, 2021

Docker part 1 - Hands-on

https://maricaantonacci.github.io/docker-tutorial/ 

26

https://maricaantonacci.github.io/docker-tutorial/


Corso docker e orchestrazione di container - June 15-18, 2021

References & credits

https://docs.docker.com/get-started/

https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-kno
w-to-start-creating-containers-8ffaf064930a

http://100daysofdevops.com/21-days-of-docker-day-21/

https://awesome-docker.netlify.app/

27

https://docs.docker.com/get-started/
https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-know-to-start-creating-containers-8ffaf064930a
https://medium.com/zero-equals-false/docker-introduction-what-you-need-to-know-to-start-creating-containers-8ffaf064930a
http://100daysofdevops.com/21-days-of-docker-day-21/
https://awesome-docker.netlify.app/

