

LNF general seminar

THE KM3NET EXPERIMENT

ROSA CONIGLIONE FOR THE KM3NET COLLABORATION

INFN - LABORATORI NAZIONALI DEL SUD (ITALY)

KM3NET

KM3NeT is a research infrastructure hosting two neutrino detectors in the Mediterranean Sea

- KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss)
 - observation of high energy (GeV ÷ PeV) neutrino sources r a telescope offshore Capo Passero (Sicily-Italy) is in construction at a depth of 3500m
- KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss)
 - determination of the neutrino mass hierarchy r a detector offshore Toulon (France) able to detect neutrinos of tens of GeV is in construction at a depth of 2500m

1 collaboration 1 technology *–* 2 detectors

THE KM3NET DETECTORS

Detection Unit (DU)

Detectors in construction

THE KM3NET/ARCA DETECTOR

ARCA

- Depth ~3500 m
- Two blocks of 115 Detection Units each
- Average distance between Detection Units ~90 m
- Vertical distance between DOMs ~36 m
- Volume (0.5 × 2) km³ ≈1 Gton

THE KM3NET/ORCA DETECTOR

ORCA

- Depth ~2500 m
- One block of 115 Detection Units
- Average distance between Detection Units ~20 m
- Average vertical distance between DOMs ~9 m
- Volume ≈ 7 Mton

THE KM3NET DETECTORS

DETECTION PRINCIPLE

For high energy studies: background from the interactions of Cosmic Ray with the atmosphere: muons and neutrinos produced

- The neutrinos interact in the water/ice or rocks around the detector and produce secondary particles that emit Cerenkov light in a cone at 42° w.r.t the particle direction.
- Light detected by means of optical sensors (photomultipliers)
- From the arriving time of photons and from the positions of the photomultipliers is possible to determine the direction of the secondary particles. If muons, generated by ν_µ, the precision in the reconstruction of the direction is very high (0.1°-0.2°). High energy neutrinos are collinear with muons

Possible to detect also v_e

DETECTION PRINCIPLE

THE PHYSICS

A GLOBAL VIEW OF THE UNDER WATER/ICE NEUTRINO DETECTORS

ORCA: THE NEUTRINO OSCILLATION PHYSICS

11

 $\begin{array}{l} Atmospheric \ neutrino \\ measurement \ >1 \ GeV \\ A \ "for free" \ beam \ of \ neutrinos \ of \ known \\ composition \ (v_e \ and \ v_{\mu}) \ and \ energies \end{array}$

- Neutrino mass ordering determination
- Neutrino oscillation parameters: sensitive to θ_{23} and Δm^2_{31}
- Sterile neutrinos
- Tau appearance

.

Needed:

- Good angular and energy determination
- Good ν_e/ν_μ discrimination

THE MAIN ORCA PHYSICS GOALS

ORCA: NEUTRINO OSCILLATIONS WITH ATMOSPHERIC NEUTRINOS

Measurements of mixing parameters

Measurements of the neutrino mass hierarchy

https://arxiv.org/abs/2103.09885 17 March 2021

THE HIGH ENERGY NEUTRINO ASTRONOMY

13

High energy neutrinos: a new messenger to observe the sky

THE HIGH ENERGY NEUTRINO ASTRONOMY

The astrophysical beam dump

Accelerator

Leptonic production of high energy $\,\gamma\,$

Inverse Compton

 $e + \gamma_{Synchrotron} \rightarrow e' + \gamma'_{HE}$

Hadronic production of v and high energy v

 $p + p \rightarrow X, \pi$ $p + \gamma \rightarrow N\pi$ Pion and muon decays
neutral pions \rightarrow HE gammas
charged pions \rightarrow HE $\nu_{\mu} \nu_{e}$

Neutrino detections from astrophysical sources: a clear signature for hadronic processes

THE HIGH ENERGY NEUTRINOS: THE EXISTING DATA

First evidence of cosmic neutrino in 2013

Big uncertainties present in the data

- Single power law? Statistics not enough to distinguish between different models.
- Currently no model is significantly preferred compared to a single power law (ICRC2019 PoS 1004)

Neutrino origin not known

THE HIGH ENERGY NEUTRINOS: THE EXISTING DATA

16

Thanks to multi-messenger observation the first source of neutrino was discovered (~3σ significance) ← the blazar TXS 0506+056 No counterpart observation in the period 2014-2015

horizontal track with a good angular resolution $5.7 \, {}^{+0.50}_{-0.30}$ below the horizon most probably $E_v = 290$ TeV

OPEN QUESTIONS

17

- Which classes of sources contribute to the observed diffuse neutrino flux ?
- \bullet Which mechanism is responsible for the neutrino emission p-p or/and p- γ ?
- Which is the flavor composition ?
- Are neutrinos and gammas/CR observed from the same sources?
- Which is the contribution of neutrino from the Galactic plane ?

ARCA: THE MAIN PHYSICS GOALS

18

ARCA: ASTROPHYSICS AND MULTI MESSENGER

Detection of cosmic diffuse

neutrinos

5σ ~ 1 year for one block detector (115 DUs)

Astrop. Phys. 111 (2019) 100 -110

Observation within a few years if their γ-ray emission is of purely hadronic origin. Stacking Vela Jr and RX J1713.7-3946 **—** 3**σ** significance within 3 years.

EVENT TYPE AND ANGULAR RESOLUTION

	TRACK*	CASCADE*
ANTARES	0.3°	3°
ΚΜЗΝΕΤ	0.1°	1.5°
ICECUBE	0.3°	7°-8°
BAIKAL -GVD	0.25°	3° - 3.5°

Tracks: very long path (Eµ>1TeV several km) Big lever arm

• Good angular resolution

Cascades: small path (Ecasc >1TeV some tens of meters)

• Modest angular resolution

*Resolution at 100 TeV

from arXiv:1910.08488, 15 October 2019

EVENT TYPE AND ANGULAR RESOLUTION

20

THE KM3NET COLLABORATION

56 institutes in 17 countries

THE TECHNOLOGY

22

The basic elements:

- Strings 👉 DU (Detection Unit)

DOM It is a 17" glass sphere with

- inside:
 - 31 3" PMTs (photocathode aerea ~ 3 × 10" PMTs)
 - LED and Piezo
 - Front-end electronics -> FPGA

18 DOMs in a DU

THE KM3NET ARCHITECTURE

ORCA shore station

THE DETECTOR CONSTRUCTION

Despite pandemic big efforts are on going in the detector construction

THE INTEGRATION

DOM integration

Base Module integration

THE INTEGRATION

26

ORCA STATUS

From February 2020 six detection units in operation

CU Detector Manager					ORCA Shore Stati
D_ORCA886 1687945858312 logged on as aen	zenhoefer Log out 2021	nar /#2/#9-13:33:27			
Current status Current run number					
Detector S20° Ping					
1	2	2			
2		2		2	
0	2	- ě	2	. ě	2
2		2	<u>ě</u>	2	. Š
é			2		2
2		2		2	<u>6</u>
	2	<u>§</u>	2	<u>\$</u>	2
a a a a a a a a a a a a a a a a a a a	8	2		2	
2	ĕ	8	- E	2	ě –
ē	8	ĕ	2	- ē	2
	ĕ	2	ĕ	2	ě
ĕ	8	ĕ	2	ĕ	2
2	ě	2	ĕ	2	ě.
Ĩ	ę	T	ę.	T	ę.
Ron field			Query Field		

More than one year of data available

Data Taking efficiency of 98.8%

ORCA STATUS

October 2020 👉 Successful connection of a second JB

We can now connect up to 52 DUs

ARCA STATUS

Nov 2020 👉 Successful laying of a second MEOC cable (Alcatel)

29

With this second main cable is possible to connect the full detector (2 blocks)

ARCA STATUS

8-15 April 2021 - Successful deployment of 5 DUs and 1 JB 6 DUs now in operation (1 DU deployed in Dec 2015 and still in operation)

30

Commissioning phase over Stable data taking from 13-May

5 DUs on deck before deployment

THE EFFECTIVE AREAS

Selection *—* up going tracks

Number of events per year for a cosmic diffuse $flux \Phi = 10^{-8}E^{-2}GeV^{-1}cm^{-2}s^{-1}sr^{-1}$

Effective areas >= of ANTARES

THE NEXT IMPORTANT SEA CAMPAIGNS

32

September - October 2021 5 DUs at ARCA site 7 DUs + CU (Calibration Unit) at ORCA site Spring 2022 12 DUs + 1JB +1 CB (Calibration Base) + 1 IU (Instrumentation Unit) at ARCA site 3-4 DUs at ORCA site

DETECTOR TIME CALIBRATION

IN SITU CALIBRATIONS

Time offsets:

- Intra DOM PMT time offset 👉 K40
- Inter DOM time offset LED beacon
- Inter Line time offset White Rabbit based + laser beacon

From K40 also PMT detection efficiency

Atmospheric muons a good probe to test time calibrations

Sedimentation for up-looking PMTs

DETECTOR POSITIONING

34

BASED ON ACOUSTIC POSITIONING SYSTEM

Global fit of acoustic signal arrival time

Coherent movement of ORCA 6 lines

Deviation from vertical position due to sea currents

August 2019 ARCA1

FIRST RESULTS

Eur. Phys. J. C (2020) 80-99

Measurement of the atmospheric muon flux as a function of the depth

DOM rate for $m \ge 8$ as a function of the depth of DOM \leftarrow Atmospheric muons flux depth dependence

multiplicity plot of PMTs in the DOM

35

FIRST RESULTS

ORCA4

no-oscillation hypothesis disfavoured at ~2.5 sigma

Very good agreement Data /MC

We see neutrino oscillation

FIRST RESULTS

ORCA6 first neutrino sample

From first sample of selected neutrinos 3-4 neutrino per day With the present livetime a factor 10 more neutrinos w.r.t. ORCA4

ARCA6: FIRST RESULTS

Data: 19 days ARCA 6 string

No Quality cuts applied

Quality cuts applied to select upgpoing-neutrinos

Coszen < - 0.8	Coszen < 0		
Data : 5	Data : 15		
(a)NumuCC: 2.0	(a)NumuCC: 4.0 Mupage : 7.0		
Mupage : 0.7			

CORE COLLAPSE SUPERNOVAE

Accepted on APJ C https://arxiv.org/abs/2102.05977

 $>5\sigma$ for ARCA+ORCA for 27M $_{\odot}$ at a distance <25kpc

A trigger for CCSN already implemented Integrated in SNEWS

39

KM3NET MULTI-MESSENGER PROGRAM

SUMMARY

- First 6 ORCA DU operating from more than 1 year
 First ARCA DU operating from more than 5 years + 5 DUs from 2 month
- Good data/MC agreement good detector knowledge

Big efforts to maintain the time schedule in COVID era

MOVIE: DU DEPLOYMENT

Deployment DU

MOVIE: THE UNROLLING

MOVIE: LOM AT SEA SURFACE

