## THE KM3NET EXPERIMENT

ROSA CONIGLIONE
FOR THE KM3NET COLLABORATION

INFN - LABORATORI NAZIONALI DEL SUD (ITALY)

## KM3NET

## KM3NeT is a research infrastructure hosting two neutrino detectors in the Mediterranean Sea

- KM3NeT/ARCA (Astroparticle Research with Cosmics in the Abyss)
- observation of high energy ( $\mathrm{GeV} \div \mathrm{PeV}$ ) neutrino sources $\mathbf{r}$ a telescope offshore Capo Passero (Sicily-Italy) is in construction at a depth of 3500 m
- KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss)
- determination of the neutrino mass hierarchy $\mathbf{r}$ a detector offshore Toulon (France) able to detect neutrinos of tens of GeV is in construction at a depth of 2500 m


## THE KM3NET DETECTORS



## THE KM3NET/ARCA DETECTOR

ARCA<br>- Depth ~3500 m<br>- Two blocks of 115 Detection Units each<br>- Average distance between Detection Units $\sim 90 \mathrm{~m}$<br>- Vertical distance between DOMs ~36 m<br>- Volume ( $0.5 \times 2$ ) km³ $\approx 1$ Gton



## THE KM3NET/ORCA DETECTOR

## ORCA

- Depth ~2500 m
- One block of 115 Detection Units
- Average distance between Detection Units $\sim 20 \mathrm{~m}$
- Average vertical distance between DOMs ~9 m
- Volume $\boldsymbol{\approx} \mathbf{7}$ Mton



## THE KM3NET DETECTORS



## DETECTION PRINCIPLE



For high energy studies: background from the interactions of Cosmic Ray with the atmosphere: muons and neutrinos produced

The neutrinos interact in the water/ice or rocks around the detector and produce secondary particles that emit Cerenkov light in a cone at $42^{\circ}$ w.r.t the particle direction. Light detected by means of optical sensors (photomultipliers)
From the arriving time of photons and from the positions of the photomultipliers is possible to determine the direction of the secondary particles. If muons, generated by $\mathbf{v}_{\mu^{\prime}}$ the precision in the reconstruction of the direction is very high $\left(0.1^{\circ}-0.2^{\circ}\right)$. High energy neutrinos are collinear with muons
Possible to detect also $\mathrm{v}_{\mathrm{e}}$


## DETECTION PRINCIPLE



( KM 3 NeT


## THE PHYSICS

## Neutrino Energy from MeV to PeV



Super Novae explosion MeV


Neutrino oscillation GeV


Dark Matter TeV

```
ARCA + ORCA
```


## ORCA



HE neutrinos
Multi-messenger program PeV

## ARCA

## ANTARES:

A small size detector (0.01 $\mathrm{km}^{3}$ ) working from more than 10 years

## A GLOBAL VIEW OF THE UNDER WATER/ICE NEUTRINO DETECTORS



## ORCA: THE NEUTRINO OSCILLATION PHYSICS



Atmospheric neutrino measurement $>1 \mathrm{GeV}$
A "for free" beam of neutrinos of known composition ( $v_{\mathrm{e}}$ and $\mathrm{v}_{\mu}$ ) and energies

- Neutrino mass ordering determination
- Neutrino oscillation parameters: sensitive to $\theta_{23}$ and $\Delta m^{2} 31$
- Sterile neutrinos
- Tau appearance
- .......

Needed:

- Good angular and energy determination
- Good $v_{\mathrm{e}} / \mathrm{v}_{\mu}$ discrimination



## THE MAIN ORCA PHYSICS GOALS

Measurements of the neutrino mass
ORCA: NEUTRINO OSCILLATIONS WITH ATMOSPHERIC NEUTRINOS

Measurements of mixing parameters

hierarchy



## THE HIGH ENERGY NEUTRINO ASTRONOMY

High energy neutrinos: a new messenger to observe the sky


The astrophysical beam dump


Leptonic production of high energy $\mathbf{Y}$
Inverse Compton

$$
e+\gamma_{\text {Synchrotron }} \rightarrow e^{\prime}+\gamma_{\mathrm{HE}}^{\prime}
$$

Hadronic production of $\mathbf{v}$ and high energy Y

$$
\begin{aligned}
& p+p \rightarrow X, \Pi \\
& p+\gamma \rightarrow N \pi \\
& \text { Pion and muon decays } \\
& \text { neutral pions } \rightarrow H E \text { gammas } \\
& \text { charged pions } \rightarrow H E V_{\mu} v_{e}
\end{aligned}
$$



Neutrino detections from astrophysical sources: a clear signature for hadronic processes

## THE HIGH ENERGY NEUTRINOS: THE EXISTING DATA

First evidence of cosmic neutrino in 2013



Big uncertainties present in the data

- Single power law? Statistics not enough to distinguish between different models.
- Currently no model is significantly preferred compared to a single power law (ICRC2019 PoS 1004)

Neutrino origin not known

Thanks to multi-messenger observation the first source of neutrino was discovered ( $\sim 3 \sigma$ significance) $\sim$ the blazar TXS 0506+056 No counterpart observation in the period 2014-2015



IceCube Coll. Science 361, eaat1378 (2018)

## OPEN QUESTIONS

- Which classes of sources contribute to the observed diffuse neutrino flux?
- Which mechanism is responsible for the neutrino emission p-p or/and $\mathrm{p}-\mathrm{Z}$ ?
- Which is the flavor composition?
- Are neutrinos and gammas/CR observed from the same sources?
- Which is the contribution of neutrino from the Galactic plane ?


## ARCA: THE MAIN PHYSICS GOALS

Detection of cosmic diffuse neutrinos

$5 \sigma \sim 1$ year for one block
detector (115 DUs)

Galactic sources


Observation within a few years if their $\gamma$-ray emission is of purely hadronic origin.
Stacking Vela Jr and RX J1713.7-3946 $\approx$ 30 significance within 3 years.

## EVENT TYPE AND ANGULAR RESOLUTION

TRACK* CASCADE*
ANTARES
KM3NET
ICECUBE
BAIKAL - GVD
$0.3^{\circ}$
$0.1^{\circ}$
$0.3^{\circ}$
$0.25^{\circ}$
$3^{\circ}-3.5^{\circ}$

Tracks: very long path (E $\mu>1 \mathrm{TeV}$ several km) Big lever arm

- Good angular resolution

Cascades: small path (Ecasc $>1 \mathrm{TeV}$ some tens of meters)

- Modest angular resolution


## KM3NeT



IC resolution for tracks from arXiv:1910.08488, 15 October 2019

## EVENT TYPE AND ANGULAR RESOLUTION

TRACK* CASCADE* Tracks: very long path (E $\mu>1$ TeV several km)

ANTARES
$0.3^{\circ}$
KM3NET
ICECUBE
BAIKAL -GVD
*Resolution at 100 TeV
$0.1^{\circ}$
$0.3^{\circ}$
$0.25^{\circ}$

Expected KM3NeT/ARCA

## KM3NeT

 $E_{v}$ of about 200 TeV

## THE KM3NET COLLABORATION

56 institutes in 17 countries


## THE TECHNOLOGY

The basic elements:

- Optical sensors © DOMs (Digital Optical Module)
- Strings $\approx$ DU (Detection Unit)
- Seafloor network $\approx$ Electro-optical cables and JBs (Junction Boxes)


It is a 17 " glass sphere with inside:

- 31 3" PMTs (photocathode aerea $=3 \times 10^{\prime \prime}$ PMTs)
- LED and Piezo
- Front-end electronics -> FPGA



## THE KM3NET ARCHITECTURE



## ORCA shore station



ARCA shore station


## THE DETECTOR CONSTRUCTION



Despite pandemic big efforts are on going in the detector construction

## THE INTEGRATION

## DOM integration



Base Module integration


## THE INTEGRATION

DU integration


## ORCA STATUS

## From February 2020 six detection units in operation



More than one year of data available


Data Taking efficiency of 98.8\%

## ORCA STATUS

October 2020 Successful connection of a second JB


We can now connect up to 52 DUs


## ARCA STATUS

Nov 2020 Successful laying of a second MEOC cable (Alcatel)


## ARCA STATUS

8-15 April 2021 Successful deployment of 5 DUs and 1 JB 6 DUs now in operation (1 DU deployed in Dec 2015 and still in operation)


Commissioning phase over Stable data taking from 13-May

5 DUs on deck before deployment


## THE EFFECTIVE AREAS

Selection up going tracks
Number of events per year for a cosmic diffuse
flux $\Phi=10^{-8} \mathrm{E}^{-2} \mathrm{GeV}^{-1} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}$


Effective areas $>=$ of ANTARES

## THE NEXT IMPORTANT SEA CAMPAIGNS

September - October 2021
5 DUs at ARCA site
7 DUs + CU (Calibration Unit) at ORCA site
Spring 2022
12 DUs + 1JB +1 CB (Calibration Base) +1 IU (Instrumentation Unit) at ARCA site 3-4 DUs at ORCA site


April 2021
6 ARCA
6 ORCA

Sept/Oct 2021
11 ARCA
13 ORCA

Spring 2022
23 ARCA
20 ORCA

## DETECTOR TIME CALIBRATION

## IN SITU CALIBRATIONS

Time offsets:

- Intra DOM PMT time offset © K40
- Inter DOM time offset $\boldsymbol{\sim}$ LED beacon
- Inter Line time offset $\boldsymbol{\sim}$ White Rabbit based + laser beacon

From K40 also PMT detection efficiency



Atmospheric muons a good probe to test time calibrations

## DETECTOR POSITIONING

BASED ON ACOUSTIC POSITIONING SYSTEM
Global fit of acoustic signal arrival time
Coherent movement of ORCA 6 lines


Deviation from vertical position due to sea currents


## FIRST RESULTS

## Measurement of the atmospheric muon flux as a function of the depth

DOM rate for $\mathrm{m} \geqq 8$ as a function of the depth of DOM Atmospheric muons flux depth dependence multiplicity plot of PMTs in the DOM


$\mathrm{m}<6$ 40K
$\mathrm{m}>8 \approx$ atmospheric muons

## FIRST RESULTS

## ORCA4


no-oscillation hypothesis disfavoured at $\sim 2.5$ sigma

Very good agreement Data /MC
We see neutrino oscillation

## FIRST RESULTS

## ORCA6 first neutrino sample



From first sample of selected neutrinos 3-4 neutrino per day With the present livetime a factor 10 more neutrinos w.r.t. ORCA4

## ARCA6: FIRST RESULTS

## Data: 19 days ARCA 6 string

No Quality cuts applied


Quality cuts applied to select upgpoing-neutrinos


Coszen < 0
Data: 15
(a)NumuCC: 4.0

Mupage : 7.0

## CORE COLLAPSE SUPERNOVAE



$>5 \sigma$ for ARCA+ORCA for $27 \mathrm{M} \odot$ at a distance $<25 \mathrm{kpc}$

A trigger for CCSN already implemented Integrated in SNEWS

## KM3NET MULTI-MESSENGER PROGRAM



## SUMMARY

- First 6 ORCA DU operating from more than 1 year
- First ARCA DU operating from more than 5 years +5 DUs from 2 month
- Good data/MC agreement good detector knowledge

Well established technology

Big efforts to maintain the time schedule in COVID era

## MOVIE: DU DEPLOYMENT

## Deployment DU



## MOVIE: THE UNROLLING



MOVIE: LOM AT SEA SURFACE

