Coupling the RIB Facility EXOTIC to the γ–Ray Spectrometer AGATA

Marco Mazzocco

Dipartimento di Fisica e Astronomia, Università di Padova and INFN – Sezione di Padova, Padova, Italy

Dimitra Pierroutsakou

INFN – Sezione di Napoli, Napoli, Italy

AGATA Collaboration Meeting November 10th, 2021

RIB In-Flight Production at LNL

- In-flight production of **light weakly-bound RIBs**, employing **two-body inverse kinematics reactions** with heavy projectiles impinging on **gas targets** (p,d,³He).
- The **commissioning** of the facility was performed in 2004. F. Farinon et al., NIM B 266, 4097 (2008)
- A **substantial upgrade process** was subsequently held in 2012. M. Mazzocco et al., NIM B 317, 223 (2013)

8 Radioactive Ion Beams have been delivered so far:

1. 17 F (S_p = 600 keV): $p(1^{7}O, 1^{7}F)n$ $Q_{value} = -3.54 \text{ MeV};$ 2. ⁸B ($S_p = 137.5 \text{ keV}$): ³He(⁶Li,⁸B)n $Q_{value} = -1.97 \text{ MeV};$ ⁷Be (S_{α} = 1.586 MeV): $Q_{value} = -1.64 \text{ MeV};$ p(⁷Li,⁷Be)n 3. ¹⁵O ($S_p = 7.297$ MeV): $p(^{15}N,^{15}O)n$ $Q_{value} = -3.54 \text{ MeV};$ 4. ⁸Li ($S_n = 2.033$ MeV): d(⁷Li,⁸Li)p $Q_{value} = -0.19 \text{ MeV};$ 5. $^{10}C (S_p = 4.007 \text{ MeV}):$ $Q_{value} = -4.43 \text{ MeV};$ p(¹⁰B,¹⁰C)n 6. ¹¹C ($S_p = 8.689$ MeV): $Q_{value} = -2.76 \text{ MeV};$ $p(^{11}B,^{11}C)n$ 7. ¹⁸Ne ($S_p = 3.923$ MeV): ³He(¹⁶O,¹⁸Ne)n $Q_{value} = -3.19 \text{ MeV};$ 8.

Facility EXOTIC at LNL

Two-Stage RIB Selection

I. Bp selection

II. v selection

Wien Filter Tuning

A careful tuning of the **magnetic field** of the **Wien Filter** helps **increasing** either the secondary beam **purity** or **intensity**.

Spectra collected for a Wien Filter electric field of: ± 40 kV (80%).

Secondary Beam Tracking

The facility was equipped with two **Parallel Plate Avalanche Counters** (PPACs) located upstream the reaction target to perform an **event-by-event tracking** of the **secondary beam particles**.

Light RIBs at EXOTIC

Main Topics Investigated

Reaction Dynamics at Coulomb Barrier Energies

- $^{17}F + ^{208}Pb$ C. Signorini *et al.*, Eur. Phys. J. A 44, 63 (2010)
- ¹⁷F + ⁵⁸Ni M. Mazzocco *et al.*, Phys. Rev. C 82, 054604 (2010)
- ¹⁷**F** + ¹**H** N. Patronis *et al.*, Phys. Rev. C 85, 024609 (2012)
- ⁸**B** + ²⁸**Si** A. Pakou *et al.*, Phys. Rev. C 87, 014619 (2013)
- ⁷Be + ⁵⁸Ni M. Mazzocco *et al.*, Phys. Rev. C 92, 024615 (2015)
- ⁷Be + ²⁰⁸Pb M. Mazzocco *et al.*, Phys. Rev. C 100, 024602 (2019)
- ⁷Be + ²⁸Si O. Sgouros *et al.*, Phys. Rev. C 94, 044623 (2016), Phys. Rev. C 95, 054609 (2017)
- ⁸Li + ⁹⁰Zr A. Pakou *at al.*, Eur. Phys. J. A 51, 55 (2015), Eur. Phys. J. A 51, 90 (2015)
- ⁸B + ²⁸Si C. Parascandolo, D. Pierroutsakou *et al.*, (in preparation)

Resonant Scattering – a clustering

¹⁵**O** + ⁴He D. Torresi *et al.*, Phys. Rev. C 96, 044317 (2017) ¹¹**C** + ⁴He D. Torresi, C. Wheldon, C. Parascandolo *et al.*, (in preparation)

Reactions of Astrophysical Interest via Trojan Horse Method ⁷Be + ²H L. Lamia *et al.*, Ap. J. 879, 23 (2019)

Changes in the Experimental Hall

The small reaction chamber housing the first PPAC and the main reaction chamber around the final focal plane of EXOTIC were removed in March 2021 in order to free the space needed for the installation and the services of AGATA, nevertheless ...

EXOTIC-AGATA Connection

... the AGATA focal plane, in the PRISMA-AGATA configuration, is located 2.68 m downstream the original final focal plane.

Modified Ion–Optics

Moving the final focus **downstream** requires **lower magnetic fields** at the pole-tips of the **quadrupoles of the second triplet**.

Ion-optical calculations were performed to estimate the **relative transmission** in the two configurations.

EXOTIC

Ion Optical Calculations

Beam profile **behind the first quadrupole triplet (S1)**, **after the dipole magnet (S2)**, at the **exit of the second quadrupole triplet (S3)** and at the **final focal plane (F2)**.

Relative Transmission

Ratio of counts AGATA / EXOTIC

Expected RIB Intensities

RIB	EXOTIC Conf. (pps)	AGATA Conf. (pps)	E_{max} (MeV)
⁸ Li ³⁺	10^{5}	$5 imes 10^4$	21.7
$^{7}\mathrm{Be}^{4+}$	10^{6}	5×10^5	44.2
$^{8}\mathrm{B}^{5+}$	10^{3}	4×10^2	45.5
$^{10}\mathrm{C}^{6+}$	$5 imes 10^3$	$2 imes 10^3$	51.8
$^{11}\mathrm{C}^{6+}$	$2 imes 10^5$	10^{5}	54.2
$^{15}O^{8+}$	4×10^4	2×10^4	70.6
$^{17}F^{9+}$	10^{5}	4×10^4	79.6
$^{18}\mathrm{Ne^{10+}}$	6×10^3	2×10^3	78.1

Tasks and Time-Line of the Project

Task	Intervention	Service	Semester	Task	Intervention	Service
1	Laser-assisted alignment	LNL Acc. Division	$2021/\mathrm{II}$	5	Pipeline replacement (I)	LNL Users Service
2	Beam Diagnostic upstream			7	Beam diagnostic (proj.)	PD Design Office
	the production target		2022/I	2	2 four-sector slits (proj.)	PD Design Office
	2 four-sector slits (project)	PD Design Office PD Mech. Workshop		5	Pipeline replacement (II)	LNL Users Service
	2 four-sector slits (realization)			7	Beam diagnostic (proj.)	PD Design Office
	or 2 diagnostic boxes (installation)	LNL Acc. Division		7	Beam diagnostic (det.)	NA SER
3	Guiding System for the gas target		$2022/\mathrm{II}$	2	2 four-sector slits (real.)	PD Mech. Workshop
	Technical drawing	PD Design Office		3	Gas target guiding system (proj.)	PD Design Office
	Realization	PD Mech. Workshop		6	Magnet PS control system	LNL SCA
4	Slit Remote Control System	LNL SCA		7	Beam diagnostic (real.)	PD Mech. Workshop
	Deple convert of the Dipolines	INI Harry Coursian		7	Beam diagnostic (elec.)	NA SER
Ð	for magnets and power supplies	LINE Users Service	2023/I	2	2 four-sector slits (inst.)	PD Mech. Workshop
6	Magnet Power Supply	LNL SCA		3	Gas target guiding system	PD Mech. Office
6	Control System	LIVE SOM		4	Slit remote control system	LNL SCA
7	7 Beam Diagnostic in provimity of			7	Beam diagnostic (inst.)	PD Mech. Workshop
the final focal plane					and NA SER	
	Detectors and electronics	NA SEB		7	Beam line connection	PD Mech. Workshop
	Technical drawing	PD Design Office		1	Laser-assisted alignment	LNL Acc. Division
	Realization	PD Mech. Workshop			In-beam commissioning	

Thank You Very Much for Your Attention