

AGATA at GANIL Final report

ACC November 2021

 \rightarrow 36 capsules back in operation for the data taking

MUGAST campaign 2021

NUCLEAR STRUCTURE. Proton-neutron interactions across the *N* = 28 shell closure via ⁴⁷K(*d*,*p*)⁴⁸K, and implications for the most neutron-rich phosphorus (Spokespersons: W.N. Catford, G. Lotay and A. Matta) SPIRAL1 post-accelerated RIB MUGAST-AGATA-VAMOS setup

AGATA + VAMOS 2021 – Heavy lons

AGATA

CNRS/IN2P3

- **E806 : Spectroscopy in the vicinity of N=126 from MNT**¹³⁶**Xe+**¹⁹⁸**Pt** *H. Kim et al.*
- Second Arm Detection
- Delayed γ-ray spectroscopy
 - Successful experiment
 - A lot to be analyzed
 - Complementary devices analysis

Identified in VAMOS

* P. R. John et al. Phys. Rev. C 90, 021301(R) – (2014) AGATA PRISMA

18th -20th of February 2013 Campaign spokesperson : Silvia Lenzi

A document summarizing the outcome of the workshop has been distributed to the collaboration and the participants

VAMOS disp VAMOS GFM = VAMOS foc NEDA SPIRAL1 Solo

The Campaign

The AGATA campaign at GANIL has been extend (4 times) to end of June 2021

Each GANIL PAC had a "PrePac" workshop with a specific call *without filters* : *AGATA Collaboration Meeting*

- Ist PAC in 2014 : VAMOS (10 experiments approved)
- 2nd PAC in 2015 : VAMOS || NEDA (10 experiments approved)
- **G** 3rd PAC in 2016 : NEDA (6 experiments approved)
- 4th PAC in 2017: Fully opened : 2(1) VAMOS (MUGAST) approved
- **5**th PAC in 2018 : MUGAST (2 experiments approved)
- **6**th PAC in 2019 : MUGAST (1 experiment approved)
- **7**th PAC in 2020 : VAMOS heavy ions (2 experiments re-approved)
- PAC in 2021 : call in February –without AGATA

927 UT have been already approved821 UT have been performed over 29 experiments (90 % done)

Experiments performed in 2015-2021 at GANIL with AGATA

Proton-neutron interactions across the N = 28 shell closure via ⁴⁷K(d,p)⁴⁸K

Integrated number of scientific papers

From [2015,2016,2017] fully analyzed experiments, we get 1.35 paper / experiment in average

CNRS/IN2P3

laboratoire commun CEA/DRF

In the corresponding years [2019, 2020, 2021], 40-50 % of the GANIL Nuclear Physics publication is AGATA

Years since Start of the campaign

Complete set of bound negative-parity states in the neutron-rich nucleus ¹⁸N S. Ziliani *et al.* Phys. Rev. C 104, L041301 – (2021) (AGATA-VAMOS-PARIS)

Accessing tens-to-hundreds femtoseconds nuclear state lifetimes with low-energy binary heavy-ion reactions M. Ciemała Eur. Phys. J. A (2021) 57:156 (AGATA-VAMOS-PARIS)

Lifetime measurements in the even-even ^{102–108}Cd isotopes M. Siciliano *et al.* Phys. Rev. C 104, 034320 – (2021) (AGATA-VAMOS)

Evidence for enhanced neutron-proton correlations from the level structure of the N=Z+1 nucleus ⁸⁷Tc X. Liu *et al.* Phys. Rev. C 104, L021302 – (2021) (AGATA-NEDA-DIAMANT)

GANIL Campaign efficiencies

GANIL Campaign achievements

- > No failure of the cryogenic part
- Complete change of technology in the data storage to CEPH (/agatadisks/)
- ➤ Data acquisition system major upgrade Narval → DCOD Ready for phase 2
- Continues integration of femul and agapro
- New tools to make the data more « accessible » (AGASpy, femul::TreeBuilder, documentation)
- Phase 0 stabilization (ATCA fuses, no more LINCO1, cooling plates)
- Phase 1 (GGP) put on-line successfully
- Improved PCIe readout libraries (Crystal Producer) for both GGP and LINCO2
- Great progresses in the global understanding of the response function of the array (efficiencies, performances, data rate, angular correlation)
- New trigger processor
- ➤ Coupled to NEDA DIAMANT (GTS based), VAMOS (VME→GTS/numexo), MUGAST, PARIS, DSSD …
- Successful integration of NUMEXO2 and its TP in AGATA via the GTS and the DCOD/TM/RCC systems
- ➢ GRID transfer is a routine
- Topology Manager
- Documentation (yes !)
- Data analysis schools

Some regrets

- We never reached the efficiency we promised for the 1st PAC meeting
- We did not improve at all the PSA algorithms in the on-line processing
- AGATA remain "complex" to start and of expert duties (can we dream to a "SETUP", "STOP", "START" Midas exogam like panel ?)
- And for problems at expert level, cooking recipies are not very useful
- SPIRAL1 did not delivered all expected beams.
- Stable beams accelerator are what they are. Should we run longer experiment to make indeed a breakthrough ?
- The Gas-filled mode of VAMOS was never developed
- Angular distribution/correlation and polarization measurements
- There was clearly an opportunity to make a very long fission run (spectroscopy and plunger)
- ⁴⁸Ca-based experiment never done due to the target production
- The amount of data is huge ! ... and probably under-evaluated.

1 dec	ExoGa	m Data	Acquisit	tion Syste	em Contr	ol	- 0
	VMR VXI:	Stoy Go Stoy Go	 ✓ 	STOP		00	
	Readout:	Stop Go			SETUP		
Histo	gramming En	sbled 🖌	History	Eres 2	eer Hi	eto gram Ser	mp
Таре	Server / Mer	ge Trenster)	Envilled .		Tured	Sugar 1	
Тара	s in Use				hun Munch er	uskaowa	
Таре	Rate (Boyte	sisec)	Таре	Used (%)			
Sing	es Rates (is	ee) Sing	gleot 0				
Trig	ger Scaler Ra	tes (/sec)					
For	0	Fb2 0		Pt/S 31	Pe4	0	
Đ	t 17	Val 17		ldout <mark>34</mark>	Usec	14	
Trig	gar Raqueete	nothendled	45%				
	0						100
Pre	in las				Oriera		
Ne	ordorek N	on cing -	aperu	a 2 a a a	hohma, -	Auron	- 100

By-products

 β -decay of ${}^{46}\mathrm{Ar}$

E. $Clément^1$ and for the AGATA collaboration ¹GANIL, CEA/DRF-CNRS/IN2P3, Bd. Henri Becquerel, BP 55027, F-14076 Caen, France (Dated: November 8, 2021)

> ⁴⁶Ar β^- decay 1980Hu01,1978Pe04

Decay Scheme Intensities: Iy per 100 parent decays

All SPIRAL1 experiments have been run trigger-less [To] of β -decay of the beam have been recorded Exemple from the e786s, ⁴⁶Ar beam Applying $\gamma\gamma\gamma$ on the decay of the beam reveal a lot new states in ⁴⁶K

Counts / 2 keV

10

Sn Qs [eb] 2.5 ∆ Te 2 Xe 🗆 Ba $B(E2;\,0_1^{\downarrow}\rightarrow 2_1^{\downarrow})\;[e^2b^2$ 2.5 2 1.5 60 65 70 75 80 85 90 55

Spectroscopic quadrupole moments in ¹²⁴Xe

E. Clément,¹ P. Van Isacker,¹ M. Rejmund,¹ C. Schmitt,² A. Lemasson,¹ B. Jacquot,¹ D. Ralet,^{3,1} G. de France,¹ M. Zielińska,⁴ and for the AGATA collaboration ¹GANIL, CEA/DRF-CNRS/IN2P3, Bd. Henri Becquerel, BP 55027, F-14076 Caen, France ²IPHC/CNRS-University of Strasbourg, F-67037 Strasbourg, France ³IJCLAB, Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ⁴IRFU. CEA/DRF. Centre CEA de Saclay, F-91191 Gif-sur-Yvette Cedex, France

By-products

On the AGATA performances at low γ -ray energies

E. Clément ^a R. M. Pérez-Vidal ^b J. Dudouet ^c J. Ljungvall ^d A. Lopez-Martens ^d A. Korichi ^d J. Piot ^a

[•]Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, F-14076 Caen Cedex 05, France

 ^bINFN Laboratori Nazionali di Legnaro, IT-35020 Legnaro, Italy
 ^cUniversité Lyon, CNRS/IN2P3, IPN-Lyon, F-69622, Villeurbanne, France
 ^dLaboratoire de Physique des 2 infinis Irène Joliot-Curie, CNRS / Université Paris-Saclay / Université de Paris 91405 Orsay cedex, France

Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the ⁷⁸Ni Region: A Hint from Lifetime Measurements

C. Delafosse *et al.* Phys. Rev. Lett. **121**, 192502 – Published 9 November 2018

E669 : Lifetime Measurements Using RDDS Method in the Vicinity of ⁷⁸Ni \rightarrow ⁸⁴Ge, ⁸⁶Se and ⁸⁸Kr 2⁺ lifetime but more in the data Acta Phys. Pol. B 50, 633 (2019) https://tel.archives-ouvertes.fr/tel-01848718

^{A}X	$J^{\pi i} \to J^{\pi f}$	$B(E2\downarrow) [e^2 \text{ fm}^4]$						
		This work	Exp. literature	SM:Ni78-II	HFB-5DCH			
$^{88}\mathrm{Kr}$	$2^+ \rightarrow 0^+$	274^{+244}_{-85}	262(38) [11]	371	389			
86 Se	$2^+ \rightarrow 0^+$	456_{-48}^{+124}	438^{+259}_{-171} [12]/422(64) [11]	436	447			
86 Se	$4^+_1 \rightarrow 2^+$	306_{-42}^{+61}	≥ 140 [12]	329				

E_{γ} [keV]	Ce travail						
	τ [ps]	$B(E2)\downarrow [e^2 fm^4]$	$B(M1)\downarrow [\mu_N^2]$				
1359	74_{-67}^{+73}	2^{+25}_{-1}	-				
1238	< 5.0(6)	> 56(8)	> 0.006(1)				
1248	< 5.0(6)	> 54(7)	> 0.006(1)				
631	< 5.0(6)	> 1625(222)	> 0.051(6)				

TABLE 8.6 – Résumé des des valeurs de durée de vie pour états excités de 83 Ge

$J_i^{\pi} \to J_f^{\pi}$	E_{γ} [keV]	Ce travail			Littérature		
-		τ [ps]	$B(E2)\downarrow [e^2 fm^4]$	$B(M1)\downarrow [\mu_N^2]$	$\tau ~[\mathrm{ps}]$	$B(E2)\downarrow [e^2 fm^4]$	
$2^+ \rightarrow 0^+$	704.0(1)	$10.3^{+1.2}_{-2.2}$	456^{+124}_{-48}	-	$10.8^{+6.9}_{-3.7-0.3}$ [65]	422(64) [111]	
$4^+_1 \rightarrow 2^+$	864.1(3)	$5.5^{+0.9}_{-0.9}$	306^{+61}_{-42}	-	$< 9.9^{+3.3}_{-2.2}$ [65]	-	
$(4_2^+) \rightarrow 4_1^+$	504.2(5)	$3.2^{+0.6}_{-0.8}$	-	$0.13\substack{+0.05\\-0.01}$	-	-	
$(6^+) \to 4_1^+$	1279.3(9)	$\leq 3.9^{+1.2}_{-0.9}$	$\geq 88^{+44}_{-17}$	-	-	-	
$(5^+) \to (4^+_2)$	990.7(9)	≤ 1.6	-	≥ 0.03	-	-	

TABLE 8.2 – Résumé des valeurs de durée de vie obtenues pour les états excités de $\rm ^{86}Se$

$J_i^{\pi} \to J_f^{\pi}$	E_{γ} [keV]		Littératur		
,		$\tau [ps]$	$B(E2)\downarrow [e^2 fm^4]$	$B(M1)\downarrow [\mu_N^2]$	$\tau [ps]$
$\left(\frac{7}{2}^+\right) \rightarrow \left(\frac{5}{2}^+\right)$	1116(1)	$1.2^{+0.4}_{-0.3}$	391^{+130}_{-98}	$0.03_{-0.01}^{+0.02}$	< 3(2) [42]
$\left(\frac{9}{2}^+\right) \rightarrow \left(\frac{5}{2}^+\right)$	1437.8(5)	$0.7^{+1.3}_{-0.3}$	189^{+141}_{-122}	-	< 3(2) [42
$\left(\frac{11}{2}^{+}\right) \rightarrow \left(\frac{9}{2}^{+}\right)$	540.0(6)	$2.8^{+0.8}_{-0.9}$	-	$0.12\substack{+0.06 \\ -0.03}$	-

TABLE 8.4 – Résumé des valeurs de durée de vie obtenues pour des états excités de 85 Se a

By-products

Double Gamma decay

The main point is to discriminate the real double gamma event candidates on top of the "background" of the Compton scattering.

"Tracking" should be able to reconstruct the Compton scattering and leave only candidate for the double events ... Proof of principle ?

After Tracking – OFT Std Prompt Track1+Track2 = 661 ± 1.5 keV, nbTrack=2 Compton Angle (Track1,Track2) Vs Diff (ETrack1, ETrack2)

Remain to be understood in details < 0.007% of events

Open science, open data Data Management Plan for AGATA Phase 2

O.Stézowski On behalf of the Data Processing Group Work from dedicated DMP meetings March 2021 @ June 2021

Catalogue

ANGULAR Correlation with 35 caps in Nominal – 2017 data

part of the e673 report P.I : Ph. John

E673 - ⁶⁰Co centered at the target position. Nominal position run 1105

Normalization done by grouping 100 tracked events and search for 1.1 - 1.3 coincidences with these 100 inter-events. This ensures real random coincidence

* T. Lauritsen et al NIM A 836, 46-56 (2016)

e673 : ¹³⁶Xe@ 897 MeV +¹⁹²Os – Tick Target. 2017 Trigger was AGATA-AGATA-FATIMA All data are OFT tracked with standard Parameters Nominal AGATA configuration

With the help of Amel and Torben

Angular correlation between the 2_{1}^{+} decay and the 4_{1}^{+} , 2_{2}^{+} and random(411 keV) ?

In-beam reconstructed random distribution (100 grouped events) vs Geant4 random distribution

Trend looks OK with a maximum around 90° and compatible with a strong M1 contribution

Trend looks OK with maximums toward 0° and 180° and a minimum close to 90°.

Not symmetric near the minimum and not EXACTLY at 90° (target to detector distance to be adjusted (?))

Angular correlation works.

¹²⁴Xe+⁵⁴Fe – Thin Target. e667 (2017)
 Trigger is VAMOS
 All data are OFT tracked with standard Parameters
 Nominal AGATA configuration

Graph

Conclusion

- $\checkmark\,$ The AGATA campaign has been a real success
- ✓ Very challenging coordination efforts between experiments and setups
- ✓ Sub-campaign organization controlled the entropy (should we go even beyond ?)
- ✓ AGATA changed (part of) GANIL
- ✓ There are a lot of data ! → DMP !!!
- ✓ Many results have been published and more to come
- ✓ Some data are certainly under analyzed and could be listed → DMP !!!
- ✓ Thanks to all AGATA contributors
- $\checkmark\,$ Wishing the best to LNL !

