AGATA Collaboration Meeting 2021

Contribution ID: 11 Type: not specified

AGATA@GANIL(E731): Isospin Symmetry Breaking and Shape Coexistence in Mirror Nuclei 71Kr - 71Br

Thursday, 11 November 2021 14:50 (20 minutes)

The study of the nuclear deformation for nuclei between 40 Ca and 56 Ni, characterized by the $f_{7/2}$ proton and neutron shell, has historically played a fundamental role in developing the understanding of nuclear structure. In this mass region, the mirror pair 49 Cr and 49 Mn were well-studied through Mirror Energy Differences but the information on the evolution of quadruple collectivity is still limited for the 49 Mn because no lifetime for its excited states has been measured so far.

The experiment populated excited states in the mirror pair 49 Cr (2pn) and 49 Mn (p2n) nuclei using a fusion-evaporation reaction where a 115 MeV 36 Ar beam bombarded a CaO target. The detection of the gamma-rays was performed with AGATA (Advanced GAmma Tracking Array) spectrometer at GANIL in June 2018, during AGATA, NEDA + Neutron Wall, DIAMANT campaign.

In order to determine the lifetimes of the excited states, two different software packages have been used to perform Doppler Shift Attenuation Method analysis. Both methods have been tested in the 49 Cr with compatible results and are being applied to the 49 Mn to obtain the excited states lifetimes. The results for the 49 Cr lifetimes are compatible with literature and some preliminary results of the 49 Mn have been compared with shell model predictions.

Primary authors: ESCUDEIRO, Rafael (Istituto Nazionale di Fisica Nucleare); FOR THE COLLABORA-

TION

Presenter: ESCUDEIRO, Rafael (Istituto Nazionale di Fisica Nucleare)Session Classification: AGATA Collaboration Meeting: SESSION 3