NEW GENERATION SUPERATTENUATOR (NGSA) FOR SEISMIC NOISE SUPPRESSION

Proposal to CSN5 "Open Call" R&D Program Third Generation Gravitational wave detector Einstein Telescope (ET) – Giant Laboratory

R&D PROGRAM ON VIBRATION ISOLATION SYSTEM FOR GW DETECTORS

• Summary :

Scientific Proposal & Goals of the experimental activities Deliverables

Project Organization

WP, groups involvement and responsibility, funding Impact of the experimental activity on INFN Pisa

SCIENTIFIC PROPOSAL AND GOALS

 The Project is based on the improvement of vibration isolation performance for 3rd generation detectors of Gravitational Waves – Einstein Telescope (ET) underground giant laboratory

- ET is aimed to improve the current sensitivity (2nd generation) by a factor 10 extending the observation bandwidth in the low frequency region around 2 Hz

SCIENTIFIC PROPOSAL AND GOALS /2

- Displacement sensitivity of the 2nd generation detetcors (O3 - Observation run 3) and ET design sensitivity
- Extending the bandwidth in the low frequency region around 2 Hz, requires an improvement with respect to the present experimental limits of more than 5 order of magnitude

SCIENTIFIC GOALS

- Define guidelines for future seismic isolation systems to be extended down to 2 Hz: seismic noise is the dominant noise source in the low frequency region
- Two different experimental lines:
- 1. Based on the **AdV mechanical structure** (Inverted Pendulum, Filters chain, heavy/cryogenic payload) with the intent to better distribute the mass all along the suspension chain, improving vertical attenuation performance and keeping the total length of the structure around 12 m
- 2. Based on the use of a **two-stage Nested Inverted Pendulum (NIP)**: evident advantages from the point of view of the horizontal pre-isolation stages but never put in operation with many open questions (stability, automatic control, cross coupling of different d.o.f., vertical and tilt noise at ground level, ...)
- Present mechanical system of the SA (2nd generation) is considered compliant with 3rd generation detector (see ET Conceptual Design)

PROJECT ORGANIZATION

- Project PI: Luciano Di Fiore (INFN NA)
- WP I: Simulation and Optimization of the Superattenuators Responsible: L. Trozzo (NA); Groups: NA, PI, EGO, LNS/SS; AdR#1 (Na 50%) Deliverable: Modeling and Simulation for the two experimental lines
- WP 2: Mechanical filter with improved Magnetic Anti-Spring (MAS) Responsible: F. Frasconi (PI); Groups: PI, NA; AdR#2 (Pi 50%) Deliverable: Filter prototype with new MAS geometry
- WP 3: Development and test of a Nested Inverted Pendulum (NIP) Responsible: R. De Rosa (NA); Groups: NA, PI, LNS/SS; AdR#I (Na 50%) Deliverable: NIP prototype in reduced scale (1:2) and its charachterization
- WP 4: Sensing and Control (S&C)

Responsible: A. Gennai (PI); Groups; PI, NA, LNS/SS; AdR#2 (Pi 50%)

Deliverable: Sensor & Control system based on commercial devices for laboratory activity

FUNDING REQUEST

2	02	2 -	2	2	4
	_			_	

RU	WP	item	2022	2023	2024	type	
	3	mechanics	10	40	5	cons	
	3	electronics	5	20	5	cons	
	3	vacuum equipment	40			cons/instrum	
NA	3	optical sensors	5	35	5	cons/instrum	
	1,3	manpower	30	30	30	AdR contract	
	1,3,4	travel expenses	3	4	4	travel	
		Total	93	129	49	271	
	2	raw material mechanics	10	15	30	cons	
	2	sensor tools	10			instm	
	4	control system	60	10	10	cons/instrum	
	4	software	15	5		software	
Р	2,4	sensors & actuators	80	10	10	instrum	
	4	cabling	10	5	5	cons	
	2,4	manpower	30	30	30	AdR contract	
	2,4	travel expenses	3	8	6	travel	
	PI 4 softwar 2,4 sensors & ac 4 cablin 2,4 manpov 2,4 travel expension 7 travel expension 3 mechan	Total	218	83	91	392	
	3	mechanics	5	5	3	cons	
LNS/	3	electronic components	5	10	3	cons	
Sassari	3,4	travel expenses	3	8	8	travel	
		Total	13	23	14	50	
TOTAL	1,2,3,4		324	215	154	713	

Researcher	RU	FTE	Contribution to Work Packages months/year			
			WP1	WP2	WP3	WP
L. Di Fiore	INFN NA	0,40	1.1	1.1	1.1	1.1
R. De Rosa		0,20			1.7	0.5
L. Trozzo		0,40	3		1.4	
AdR #1		1,00	5		6	
Total		2	9.1	1,1	10.2	1.6
F. Frasconi	INFN PI	0,40	0.5	3.4		0.5
A. Gennai		0,40	0.5		0.5	3,4
F. Pilo		0.1		1.1		
AdR #2		1		5.5		5.
Total		1,90	1	10	0.5	9.
					•	
D. D'Urso	LNS/Sassari	0,2	1.2		1.	
D. Rozza		0,1			1.1	
V. Sipala		0,1			0.6	0.5
L. Tosta e Melo		0,3			3.3	
Total		0,7	1.2		6	0.5
P. Ruggi	EGO	0,25	2.75			

SUPPORT REQUEST @ INFN PISA

- 2022 2023: I MU/year of mechanical workshop for construction of small mechanical parts for MAS prototype to be used in the test bench (VIRGO Lab INFN-Pi)
- 2022 2024: I MU/year for mechanical design and project activity for filter prototype construction (to be assigned to an external workshop)
- Standard support of "Alte Tecnologie People" for laboratory daily life