

Makoto Asai (SLAC) May 5th, 2021

- eAST (eA Simulation Tool) project is to develop a tool for fast and full simulations built on top of Geant4.
- Requirements:
 - ability to reuse existing simulation works
 - ease of switching detector options with comparable levels of detail
 - ease of switching between detailed and coarse detector descriptions
 - ease of leveraging new and rapidly evolving
- Updates:
- 1. Importing CAD file into detector simulation
 - a. Converting CAD file to GDML
 - b. Assigning material composition
 - c. Vacuum volume
- Centrally maintained and validated physics list
 - a. Baseline physics list
 - b. Validation with test beam data
 - c. Repository
- 3. Next steps

- MRADSIM developed by INFN is very promising
 - Developer team is very responsive!
 - Thanks to Wouter and Jan, few issues were identified and reported to the developers. Some of them have already been addressed.
- As a backup solution, a commercial tool is confirmed to work.
- Thanks, Elke and Rolf, for sample STEP files.
- As a preliminary measurement, navigating through tessellated solids is ~5 times slower than simple CSGs
 - With physics interactions, difference should be much smaller.
 - Further study is required with tuning granularity of facets.

EIC_model.gdml converted by a commercial tool and simulated by Geant4-based application

(eA)ST CAD import - Next steps

- We continue validating MRADSIM.
- We are developing a mechanism of mapping volume names to material compositions.
 - With a human-readable table
- Placing vacuum in the beam pipe is a challenge.
 - We need dedicated volume(s) that represent vacuum, either in the tracking world or in the virtual parallel world.
 - Otherwise, at least for the time being, the entire experimental hall will be filled by vacuum.
- We also need to iterate on the level of detail of the CAD geometries.

- Baseline physics list will be ready soon
 - It works with Geant4 version 10.7-patch01 (may work with v10.6 as well, but not with earlier version)
 - Do we need support for earlier version(s)?
 - "Open box", i.e. hard-coded. Not a black box.
 - General/basic validation within Geant4 validation suite is under preparation.
 - Maintenance required. Current physics list won't work with Geant4 version 11.
 - Hadronic physics processes will have a major restructuring.
- "Baseline"
 - It can be used for every EIC detector component as a baseline.
 - It needs tuning / optimization / specialization for each detector component.
- Validation is required.
 - We need validation with test beam data.
 - If you have your simulation code with geometry description, share it with us.
 - If you plan to implement your simulation, let's work together.
 - If sensitive test beam data is identified, we will port it to Geant4 benchmarking suite.

- Component-specific customization
 - Higher precision EM physics for vertex detector
 - Optical photon processes for DIRC
 - Tuning of production thresholds
 - Shower parameterization
- Code repository
 - To avoid uncontrolled divergence, all code should be centrally maintained and distributed.
 - Code repository with physics validation results must be set up.
 - Including test beam data / geometry
- Start regular meetings on physics list
 - For all topics related to physics options
 - First meeting in the later half of this month

- To make the plug-and-play capability, eAST will define each detector component as a region.
 - A region is responsible for implementing the geometry in it.
 - May interface to existing simulators or GDML parser
 - A region may have its own
 - physics options (including fast simulation)
 - sensitive detectors
 - stepping actions, etc.
 - Any daughter volumes in a region must not protrude from the region.
 - Sanity check provided.

Top priorities

- CAD interface
 - Iteration with CAD engineers for collecting necessary CAD files with reasonable level of detail
 - Develop / benchmark vacuum "volume"
- Physics list
 - Collect test beam data / geometry and validate the common physics list
 - Benchmark physics options / parameters for each detector component
- Region
 - Develop the global detector construction that enables plug-and-play
 - Develop region classes that interface to existing simulators, i.e. EicRoot, Eic-Smear, ESCalate and Fun4All, and to CAD/GDML parsers
- Identify liaisons to each detector components
- Data flow (from event generators, to reconstructions) needs coordination

Contact Torre, Markus, Andrea and/or me if you wish to join.

