Silicon Trackers (part2)

RD_FCC Referee meeting 3 June 2021

Attilio Andreazza Università di Milano and INFN

For the Silicon Tracker community

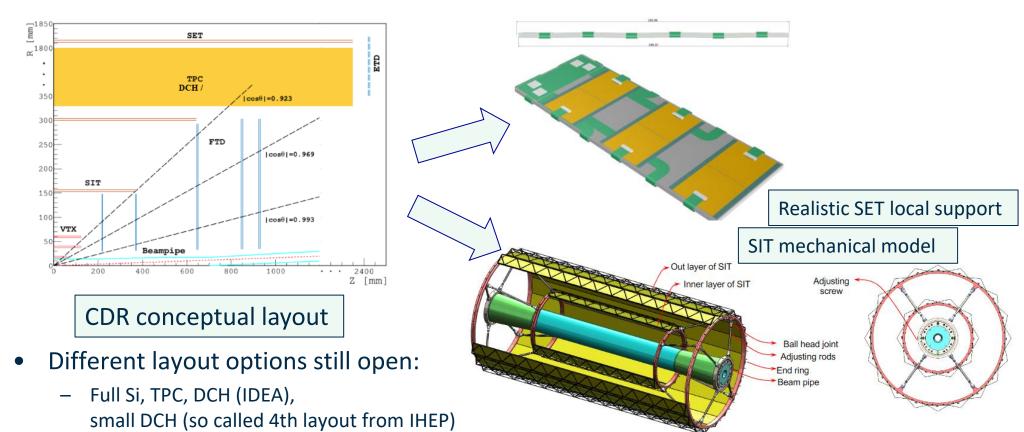
(MILANO + PISA)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Silicon Trackers

- Requirements critical for the VTX part:
 - high granularity
 - low material
 - low power consumption
- Large area tracker can be a bit less challenging
- Currently pursuing the same concept:
 - Depleted Monolithic Active Pixels
 - reduce material avoiding double strip layers
 - large scale production at various CMOS foundries
 - Exploring different technology nodes

	CEPC Detector R&D Project				
	1.2 ARCADIA CMOS MAPS				
	Document Responsi	ble:	Manuel Rolo		
lanuel's	s presentation		29/04/2020 5:00:00 PM		


CEPC Detector R&D Project 2.2 Silicon Tracker Prototype

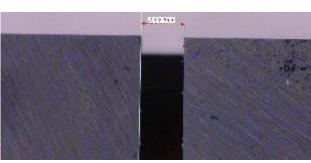
	τι	⊣ nis t	
Revision number:	3		
Last saved by on	1/22/2021 5:40:00 AM		
Document Responsible:	Harald Fox, Meng Wang		

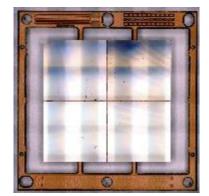
Silicon Tracker

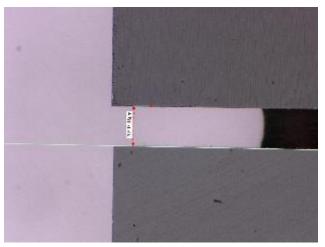
• An effort is being started to provide a realistic mechanical layout for the tracker

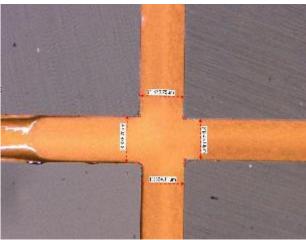
- Kickoff engineering meeting on 18 March , follow-ups on 1 April and today
- Interest by the Pisa group already involved in CMS and Belle2
 - design of a lightweight stave structure

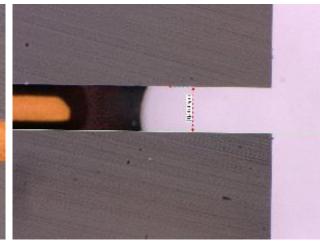
Sensor prototyping with ATLASPIX3

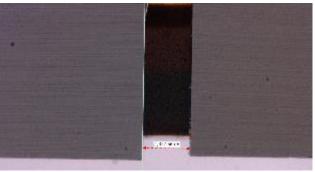

• First module assembled using the 2020 Hybrid


INFN


 Kept some safe margin to avoid clashes (300 um instead of nominal 200 um)

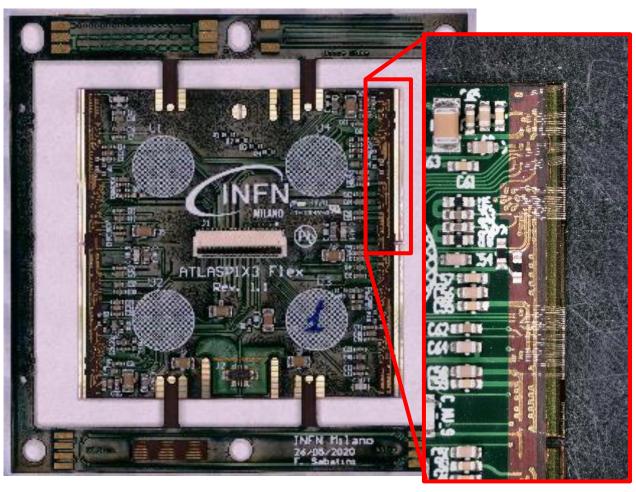

UNIVERSITÀ


DI MILANO



 parallelism acceptable: max 50 um variation between the two chip sides

Sensor prototyping with ATLASPIX3

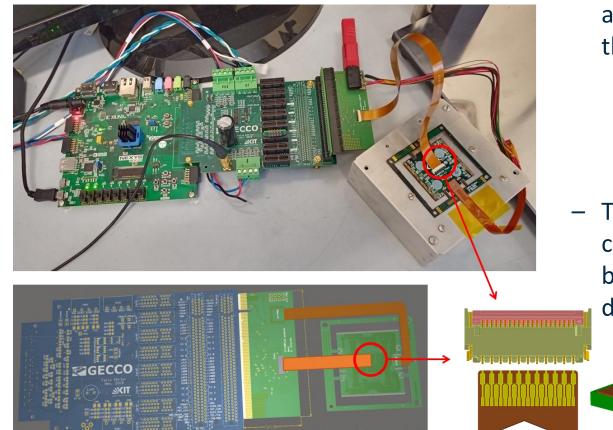

 Probing of the supply voltages has been performed on the flex without CMOS modules:

UNIVERSITÀ

DI MILANO

INFN

- HV, GNDA, VDDD, VLVDS and VGATE
- Probing of the continuity for all signals from the FMC connector to the flex circuit:
- Matched impedance and continuity for all signals
- The following signals could be probed and matched the expected results:
 - CkRef_N/P, Cmd_N/P, ExtTrigger_N/P
 - EnCDR, useSPI,
 CmdClockInvert, TakeFast,
 untriggeredROen, EnPLL,
 SelExt



CMOS Tracker

Preparing for module tests

• At the moment we are merging the firmware for the triggered readout (single chip) and the firmware for the telescope's "hit driven" readout to be able to configure 4 chips individually.

- The location of some signals on the adapter card's pins wasn't matching the one from the GECCO board:
 - Signals have been re-assigned to the correct pins location
 - Unused signals in the flex circuit have been deleted
- The last changes have been completed to obtain a working bitstream from the telescope's "hit driven" firmware Molex cable

Next steps (on 2021 budget)

- An updated version ATLASPIX3.1 is available
 - fixes on the main VDDA/VDDD regulators
 - on-chip command-clock-recovery being debugged
 - preliminary steps to start new flex design to prototype more realistic modules:
 - Only one LV supply (currently 3 are needed) + HV
 - Single command and control line (now using 4 to distribute also clock, trigger and reset signals)
- To simplify procurement logistics:
 - the required wafers for the prototyping program were purchased by UK groups
 - RD_FCC will instead pay the thinning and dicing
- Develop the stave design:
 - provide the design of a section of the stave to test multi module operation
 - design of full stave structure and FEA study the mechanical stability