

Feasibility study of the $\Lambda(1520)$ decay in Λe^+e^- at BESIII

Candidato: Guglielminotti Canun Alessio

Relatore: Destefanis Marco Giovanni Maria Correlatore: Bianchi Fabrizio 1

Overview

- Analysis motivation
- Analysis strategy
- Discriminating variables
- Conclusions

Analysis Motivation

- Test of the Extended Vector Meson Dominance model [1]
 - Vector mesons have the same quantum numbers of the photons: 1-
 - The $\Lambda(1520)$ can decay to a photon or to a vector meson (V) that produces the lepton pair
- $\Lambda(1520)$ -> $\gamma \Lambda$ decay was already seen [2]
- The decay Λ(1520)->V Λ ->e⁺e⁻ Λ has not yet been observed
- It is expected that Br(Λ(1520)-> Λ e⁺e⁻)/ Br(Λ(1520)-> Λ γ) = 10⁻²
- In principle a study of the lepton pair invariant mass can provide information on the nature of the vector meson

[1] L. G. Landsberg, Phys. Rep. 128, 301 (1985).
[2] Phys. Rev. Lett. 21, 1715 (1968)

Data Samples and Signal Events

- Exploiting the large J/ ψ sample, we search for the decay J/ ψ -> $\Lambda(1520)\overline{\Lambda}$ with $\Lambda(1520)$ -> Λe^+e^-
- Number of J/ψ events recorded by BESIII: 10^{10}
- Upper Limit for the branching ratio of the decay $J/\psi \rightarrow \Lambda(1520)\overline{\Lambda} \rightarrow \gamma \Lambda \overline{\Lambda}$ decay: < 4.1 * 10⁻⁶ [1]
- Expected ratio $Br(\Lambda(1520) \rightarrow \Lambda e^+e^-)/Br(\Lambda(1520) \rightarrow \Lambda \gamma) = 10^{-2}$
- Br(Λ->p π) = 0.64
- Expected $\Lambda e^+e^-\Lambda$ events in BESIII J/ ψ sample: $10^{10} * 4.1 * 10^{-6} * 10^{-2} * 0.64^2 = 164$
- Feasibility study on:
 - 10⁴ MonteCarlo signal events
 - 10^9 MonteCarlo generic J/ ψ decays (background events)

[1] Phy.rev.D86 (2012) 032008

Analysis Strategy

The decay $J/\psi \rightarrow \Lambda(1520)\overline{\Lambda}$ is a 2-body decay.

In our experiment CM's reference system and laboratory's reference system coincide, so we expect that $\Lambda(1520)$ and $\overline{\Lambda}$ are back-to-back and their momentum in module is: $\Lambda(1520)$

$$|p| = \frac{\sqrt{[M^2 - (m_1 + m_2)^2 (M^2 - (m_1 - m_2)^2)]}}{2M} = 806 \, MeV \; .$$

So we search for the best discriminating variables taking advantage of this particular kinematic

Event Reconstruction

Request:

- 6 well reconstructed tracks
 - without cut on the impact parameter because the Λ fly before decaying
 - with cos⊖ < 0.93
- Total charge = 0
- Λ and Λ reconstructed combining 2 opposite charged tracks, assigning the proton mass to the track that has higher probability of being a proton according to the PID algorithm
- $\Lambda(1520)$ reconstructed adding 2 opposite charged tracks to the Λ
 - The electron's mass is assigned to the 2 charged tracks.
- J/ψ reconstructed from $\Lambda(1520)\overline{\Lambda}$ pair
- No PID's probability selections are applied to maximize the signal's efficiency
- Candidate reconstruction efficiency:
 - Signal: 0.154
 - Background: 5.5*10⁻⁵

Reconstructed Particles Momenta

The arrows on the plots show the cuts on $\overline{\Lambda}$ and $\Lambda(1520)$ momenta that are good discriminating variables due to the different shapes of their distribution. In the signal plot they peak at the expected values (806 MeV)

Opening Angle between $\Lambda(1520)$ and $\overline{\Lambda}$

Applied selections: 0.75 GeV/c< $p_{\overline{\lambda}}$ <0.85 GeV/c 0.75 GeV/c < $p_{\Lambda(1520)}$ < 0.85 GeV/c

Signal

Background

The angle between $\Lambda(1520)$ and $\overline{\Lambda}$ peaks at 180° as expected for signal events and it is again a good discriminating variable. The red arrow on the plot shows the applied cut. The angle between Λ and $\overline{\Lambda}$ doesn't peak at 180° as expected.

J/ψ Invariant Mass Applied selections: 0.75 GeV/c < p_{Λ}^{-} < 0.85 GeV/c 0.75 GeV/c < $p_{\Lambda(1520)}$ < 0.85 GeV/c opening angle > 175° Signal Background J/ψ J/ψ counts counts Counts Counts 90 80 70 60 50 40 30 20 25 20 ה ה [[רי 29 3.05 3.25 2.95 3.1 3.15 3.2 2.95 3.1 3.15 3.2 3.25 M [GeV/c^2] M [GeV/c^2]

The J/ ψ invariant mass for signal events peaks at J/ ψ mass value and can be used to reduce background applying the red arrow cut.

Results(1)

Background: 290 events

The selection cuts on $p_{\overline{\Lambda}}$, $p_{\Lambda(1520)}$,opening angle and J/ψ invariant mass reduce the signal by 54.6% and the background by 99.5%

The total efficiency (reconstruction efficiency plus selection cuts) is

- $\frac{698}{10000} * 100 = 6.98\%$ for the signal
- $\frac{290}{10^9} * 100 = 2.9 * 10^{-5}\%$ for the background

10

Results(2)

On a sample of 10^{10} J/ ψ we expect:

- 164 * 0.0698 = 11.45 signal events
- 2900 background events

Conclusions:

- The signal is too small to be seen on top of the background
- In principle the resolution on momenta, angles, and invariant mass could be improved using a constrained kinematical fit and this could allow thighter cuts, but the number of signal events would still be to small compared to the background

Λ(1520)

Conclusions

- We have presented a feasibility study for the search of the $\Lambda(1520)\overline{\Lambda}$ -> Λ e+e- $\overline{\Lambda}$ final state in the BESIII sample of 10^{10} J/\psi
- We have identified a set of discriminating variables taking advantage of the 2-body decay kinematic
- Unfortunately the expected signal is too small compared to the background