

The proposal concerns the study and development of the key elements of a novel generation gantry for hadron therapy, optimized for ion beams

submitted to 2021 csn5 call areas: accelerators & detectors – interdisciplinary

> units: Ge, Mi, To, LNF national resp.: Lucio Rossi

Lucia Sabbatini - CdL Preventivi Luglio 2021

WHAT IS A GANTRY?

A gantry is a section of beamline that can rotate around the isocenter in order to direct the beam onto the patient from any direction

Courtesy M. Pullia, CAS Accelerators for medical applications 2015

Why a gantry?

To treat patient in supine position, the same in which CT, PET and MRI were acquired
To provide the maximum flexibility in selecting the the irradiation direction

Proton gantry: Mitsubishi, Hitachi, Iba... Carbon ion gantry: only two existing (HIT-HIMAC)

ION GANTRIES - STATE OF THE ART

HIT (1° rotating ion gantry)

Heidelberg Ion Therapy

Resistive magnets

L = 25 m, diam = 13 m

600 ton rotating mass

360° rotation

200 x 200 mm2 field

HIMAC-Japan

Heavy Ion Medical Accelerator in Chiba

Superconducting magnets

L = 14 m, diam = 13 m

330 ton

10 magnetic units, increasing aperture, decreasing field (2.88 – 2.37 T)

SIG PROPOSAL

- GOAL: design a **compact gantry**
- L = 12m long
- H = 5m
- Weight: about 50 tons

Key elements:

- Superconducting bending magnets
- Scanning magnets
- Diagnostics

SIG PROPOSAL

PROJECT ORGANIZATION & BUDGET

	Description of WP	Institution	Coordinator	Budget (k€)
WP1-PC	Project Coordination and Dissemination	MI	Lucio Rossi	44
WP2 – SMD	Superconducting Magnet Demonstrator	MI + GE	Lucio Rossi	591 (163 Ge + 428 Mi)
WP3 – SMS	Scanning Magnet System study	LNF	Lucia Sabbatini	71
WP4 – DDS	Technologies for Dose Delivery System	ТО	Simona Giordanengo	174
WP5 - RVS	Range Verification System	ТО	Elisa Fiorina	120
				1000

1000

SIG is integrated in a European effort for ion therapy facility:

Framework agreement between CERN, CNAO, INFN and (prob.) MedAustron

External further financial contribution to the SIG project: 670 k€ (all to WP2)

- 1. CNAO: 350 k€ (cash)
- 2. CERN: 250 k€ (components)
- 3. Previous INFN projects (conductor DISCORAP): 70 k€

WP2: STUDY, DESIGN, MANUFACTURING AND TEST OF A SUPERCONDUCTING DIPOLE MAGNET DEMONSTRATOR

Curved demonstrator magnet: 30° sector dipole

Increasing the field from less than 3 T to 4-5 T (goal: mass and volume reduction)

Possible parameters range between 5 T field with 70 mm bore, 4 T field with 90 mm bore: the parameter set will be frozen at the beginning of the project

Preliminary design, choose of cable layout, stability & quench studies. Detailed engineering design: different winding methods. Special tooling for mock up. Assembly and experimental tests(room temperature and cold test).

MI team: L. Rossi, M. Sorbi, F. Broggi, M. Statera, M. Prioli, E. Dematteis, S. Mariotto + tech. GE team: R. Musenich, S. Farinon, A. Pampaloni + tech.

WP4 - Study and development of a beam monitoring prototype

Silicon detector for DDS (dose delivery system)

Originality: direct measurement of the crossing time and position of each particle of the beam delivered to the patient: from beam tracking (based on gas detectors) to *single particle tracking* based on solid state detector technology.

Frontend readout with timing capabilities.

Test campaign with ion beams.

Collaboration with GSI.

TO team: S. Giordanengo, R. Sacchi, R. Cirio, F. Milian, S. Garbolino + technicians

WP5 - Study, design and test of the basic element for a New Concept of Range Monitoring for Ions

Detectors for RVS (range verification system)

Studying the solution for ions treatment considering both annihilation photons from fast decaying positron emitters and prompt photons (PGT: Prompt Gamma Timing technique, based on the TOF distribution, correlated to the primary particle range).

Test with ion beams.

Collaboration of Lubeck University.

TO team: E. Fiorina, F. pennazio, P. Cerello, V. Ferrero, A. Patera, R. Wheadon

WP3 - Study and design of high field scanning magnet system

Design of scanning magnet system:

challenging from electromagnetic point of view (large aperture, field quality, longitudinal size, settling time...)

scanning area @ isocenter: 30 cm x 24 cm

settling time: down to 100 μs

Studies for alternative layouts:

special configurations with variable aperture along the length (tapering) as well as combined function (XY coupling)

LNF team: L. Sabbatini, A. Vannozzi, L. Pellegrino

LNF: MILESTONES, TEAM AND BUDGET

Milestones:

- MS3.1 Conceptual design of the scanning magnets (M6)
- MS3.2 Detailed design (magnetic, electric and mechanical structure)
- DLV3.1 Complete technical specifications of the scanning magnets

(M6) (M22) (M32)

Team	2022	2023	2024	тот	
WP3 – SMS	FTE	FTE	FTE	FTE-y	
Lucia Sabbatini	0,3	0,3	0,2	0,8	
Alessandro Vannozzi	0,5	0,5	0,5	1,5	
Luigi Pellegrino	0,1	0,1	0,1	0,3	
Fellow (under recr.)	0,2	0,2	0,2	0,6	
New temp position (AR tecnologo junior)	1	1	0	2	
	2,1	2,1	1	5,2	
Budget (k€)	2022	2023	2024	тот	
Licenza software	5	5	5	15	
Missioni	2	2	2	6	
AR tecnologo junior	25	25		50	
WP3 TOT	32	32	7	71	

		2022			2023			2024					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP2	2.1												
	2.2												
	2.3												
	2.4												
	2.5												
	2.6												
ŝ	3.1		7	7					\bigstar				
WP	3.2												
WP4	4.1												
	4.2												
	4.3												
5	5.1												
Ň	5.2												
	5.3												
	5.4												