

High precision requires perfect calibration: The g-2 laser calibration system E. Bottalico

Fermilab 2021 Summer Student School – 04 August 2021

Can you spot the difference between those images?

And now?

Maybe now!?

One pixel over 7 MILION, this is the final precision on a_{μ} ! Since this value is obtained by the combination of two measured quantities ω_a and ω_p any systematic should be known even better!

Maybe now!?

One pixel over 7 MILION, this is the final precision on a_{μ} ! Since this value is obtained by the combination of two measured quantities ω_a and ω_p any systematic should be known even better!

Systematics on ω_a

What is a systematic error?

EXAMPLE Systematics on ω_a - Gain Corrections

• Total budget for systematic error on ω_a is **70 ppb**, while only **20 ppb**

are permitted for gain correction!

Source	E821 [ppb]	E989 goal [ppb]
Gain Correction	120	20
Lost Muons	90	20
Pile-Up	80	40
CBO	70	40
E-field and Pitch	50	30
Total	180	70

VADEMUCUM

- Remember in g-2:
 - Everything which changes during the *fill* (700μs)
 - Everything which changes within hours/days/months ⁽²⁾
 - Everything which never change

•••

Gain fluctuations – A long story

- The 24 electromagnetic calorimeters in Muon g-2 are made of:
 - 54 crystals of PbF2 (9 columns x 6 rows) read by 54 SIPMs (240x240pixel).
 - Crystal's length is 14 cm, 15 X_0 .
 - The Cherenkov light is used, it is faster than particles shower, allowing fast reading (signal width ~nanoseconds).

Gain fluctuations – A long story

- The 1296 SIPMs which constitute the electromagnetic calorimeters experience a gain fluctuation in three different time scales:
 - Days: Long term variation due to environmental conditions as temperature;
 - During the muon *fill* (700µs): due to the huge flux of particles which hit the calorimeters near to the injection time *(splash)*.
 - Tens of nanosecond: due to double positron hits in the same crystal within 80ns.

Gain fluctuations – In Fill correction

- When the positron hits the calorimeter (glass), it realeses energy (water) inside of it.
- An istant after the interaction, the glass contains water, proportionally to positron energy.

• The pump cannot drain all the water instantaneously (there is an *RC* which discharge the system)

• We need a system able to correct the for this effect.

Gain fluctuations – In Fill corrections

- Next the first collision another positron hits the detector (within tens of microseconds), the latter is not able to measure correctly the energy of the second particle.
- This happens for two main reasons:
 - The capacity of the glass is not infinite;

The short term gain fluctuations happen when 2 positrons hits the same crystal → SIPM within 80 ns.

SIPM surface -> 16 channels -> 54k pixel

• First Positron

Second Positron

Each SIPM behaves like a infinitesimal Geiger counter, it remains blinded by the previous hit with a characteristic time of about 15ns.

Laser system

Laser Hut

Laser system

- An high precision laser system were built by INFN in collaboration with INO.
- The system is able to correct the SIPM's response due to gain fluctuations.
- To reach the 20ppb systematic uncertainty a continuous calibration is

needed at 0.04% during the *fill* time.

Laser system

- Via optical fibers the laser light is brought to calorimeters.
- The light is sent to a bundle with 54 fibers.
- A Delrin panel with optical prisms allows to illuminate each crystal of each calorimeter.

Monitoring System

 Local Monitor (LM): Consists of a pair of PMT which read the signal sent to calorimeters The monitoring system is composed by:

Source Monitor (SM): 2 pin diode at the heads of laser heads, with a resolution of 0.3%;

Monitoring System

[≌]1800 counts 1400 ADC 1200 1000 800 600 400 200 . L . <u>. . . .</u> 50 450 500 100 150 200 250 300 350 400 time [ns] PMT which read the signal sent to

The monitoring system is composed by:

 Source Monitor (SM): 2 pin diode at the heads of laser heads, with a resolution of 0.3%;

calorimeters

Standard operation mode

The standard mode is divided into 3 different kind of pulses sent to the detector.

• SYNC: The *Sync Pulse* sent to the 1296 crystal in order to time synchronize the crystals

Gain Curve In-Fill Gain

The *In-Fill* corrections are applied to the data during the *fill*.

- The so-called gain functions are obtained by sending a series of laser pulses (3 per each *fill*) with 200 μ s of delay.
- The gain as function of time is computed:

$$G(t_i) = \left\langle \frac{SiPM_{if}}{SM_{if}} \right\rangle_{t_i} \left\langle \frac{SM_{oof}}{SiPM_{oof}} \right\rangle_{subrun}$$

- The function are fitted with a simple
- exponential:

$$G_{IFG}(t) = 1 - \alpha_{IFG} \cdot e^{-\frac{t}{\tau_{IFG}}}$$

Double Pulse Mode

g-2

Via movable mirrors (commanded remotely) it's possible to switch in Double pulse mode allowing to send at the same crystal the light of 2 laser heads with a variable delay settable from 1ns up to hundreds microseconds, also varying the energy pulse.

Double Pulse Mode

Via movable mirrors (commanded remotely) it's possible to switch in Double pulse mode allowing to send at the same crystal the light of 2 laser heads with a variable delay settable from 1ns up to hundreds microseconds, also varying the energy pulse.

INFN

Short Term Double Pulse

The *Short Term Double Pulse* (STDP) are built using dedicated laser campaign, without beam, using the scheme:

$$P_1 + P_2: P_{Norm}: P_1 + P_2: P_{Norm} \dots$$

 $G(t_i) = \frac{\langle E_2 \rangle_{t_i}}{\langle E_{Norm} \rangle_{t_i}}$

The gain curves are computed as:

04/08/21

Gain corrections – Systematic study

Once all the corrections are applied, a 22 parameters fit is done to extrapolate ω_a .

The systematic effect on *IFG* is computed applying a multiplier *A* on positron energy:

System Upgrades

Out of fill corrections: OOF Correction

INFŃ

Laser System Upgrades Run4 Thermal cooling in Laser Hut:

INFN

Conclusion

- Thanks to the laser calibration system, we can correct for calorimeter gain fluctuations the g-2 data.
- This is a novel method to energy calibration and time synchronization.
- From Run1 analysis we reach a systematic error on gain correction of about 20ppb.

"The closer you look the more there is to see" F. Jegherlehner

Thank you!!!

• For any question or just to have a chat – elia.bottalico@phd.unipi.it

