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Overview

* Computing... what is it? (An opinion.)
* Quantum computing... what is it? (Another opinion.)

* Flavors of guantum machine learning
- Classical data on quantum machines
- Classical ML for quantum machines
- Quantum data on quantum machines

Note: | am not discussing machine learning (ML) in an introductory or pedagogical way. |
assume the audience knows the basic concepts of ML, and has some familiarity with famous
algorithms like Support Vector Machines (SVMSs), decision trees, and neural networks. Expert
knowledge of these topics is not required, but everyone hopefully understands the idea of
heuristic algorithms that may be tuned by (or fit to) data.
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What is computing?

* First, what is computing? One perspective - it is physical simulation of algorithms
coupled to interpretation. We manipulate a physical system according to rules. A
metaphysical tower of concepts then allows us to interpret the results.

Certain physical systems can be

manipulated very quickly - making
algorithm simulation also very fast.

.
.
e
-
-
, * . LAANSRRN
o AR
v
et
o
.
“

We can simulate algorithms blindly
- ultimately interpretation is required.
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You can see how you would implement a table like this one with logic gates:

What is classical computing? o o :

+0 +1 +0 +1

00 01 01 10

You need two inputs and two outputs. This function is called a Half Adder:

X
C

Y D_X@y

O 0 1 1 X
+0 +1 +0 1 +y
00 01 01 10 c(xey)
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What is quantum computing?

There are many ways to leverage quantum

 Quantum computing is using quantum systems to systems to simulate an algorithm. Features of
simulate our algorithms guantum measurement mean the calculations

* Challenges are rooted in the fact that quantum
systems are delicate. And algorithms are non-
obvious.

* Multiple, “competing” platforms for quantum
computation exist. The ultimate goals are scale
and quantum error correction.

17

are probabillistic.

https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.htm| https://www.honeywell.com/en-us/company/quantum
https://sgms.fnal.gov/research/ https://www.xanadu.ai/hardware
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What /s quantum computing?

* At heart, quantum computing is unitary evolution of quantum states.
* It Is distinguished by the following features:

- Entanglement

- Unitary evolution T%‘Q)‘l'ff‘ ﬁ‘)

- Superposition of states
- Reversible computation

- Probabilistic COmputation Quantum computing power* scales exponentially with qubits
N bits can exactly simulate log N qubits
- Exponential Hilbert spaces
- Challenges with state coherence This compute unit.
@ 0 O 0) |
_ ‘-— _ Commodore 64 AWS M4 Instance Entire Global Cloud
=TT T~
|O> + |1> 1 Million x Commodore 64 1Billion x
SR B "_ - \/§ (1 Million x Commodore 64)
. 1 l |]_> can exactly simulate: 10 QUbltS 30 QUbltS 60 QUbltS
Classical Bit Qubit -
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What is quantum computing? z1 |0)— H ¢
https://bit.ly/38bidph
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Circuit composer: https://quantum-computing.iom.com/

What /s quantum computing?

qc . é
x>— H

Amplitude

_+_
iz c2 : 00 01 10 11
Q& Computational basis states
v
ol
y> H — cH Q@
(1 é %i 0.4
H®I I®H N
]_ O ]. O ]. 1 O O : 2 :l B]O CompEtlatlonal basis.:.states :ll
1 O 1 O 1 1 1 —1 0 O
E 1 0 —1 0 ﬁ 0 0 1 1 Super hand-wavy “guantum advantages”
01 0 —1 0 0 1 -1 * Superposition lets us create a sum state with two operations
instead of four.
1 * Entanglement means we can manipulate the entire state vector
0 1 1 with one operation.
00) = ol 7 5 =5 (]00) +101) + [10) + [11)) « Exploiting these operations with provable speedup is actually
0 pretty hard! (Consider measurement if nothing else...)
a¢ Fermilab
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The Quantum Circuit
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The Quantum Circuit
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What is quantum computing good for?

2 * Many things (cryptography, communications, etc.), but the “commercial
N killer app” will probably be the first proposal*: the simulation of qguantum
systems - and the money is in chemistry now. Quantum computers will
ultimately be able to do something classical computers will never be able
to do - simulate exactly the behavior of molecules with complex electron
behavior.

* The physics undergirding this is that of a system of interacting fermions.

* There are fewer commercial applications in the simulation of, say, nuclear
matter in neutrino-nucleus scattering, but we can benefit from the
commercially motivated research in quantum chemistry a great deal!

* Why is quantum computing powerful?
- https://www.smbc-comics.com/comic/the-talk-3
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* R. P. Feynman. Simulating physics with computers. [International Journal of Theoretical

Physics, 21(6):467—488, Jun 1982.
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IN GUANTUM COMPUTING, THE WHOLE
IDEA 1S JUST TO CHOREOGRAPH A
PATTERN OF INTERFERENCE WHERE
€ PATHS LEADING TO EACH WRONG
ANSWER INTERFERE DESTRUCTIVELY
AND CANCEL QUT, WHILE THE
PATHS LEADING TO THE
RIGHT ANSWER REINFORCE
EACH OQTHER.



https://www.smbc-comics.com/comic/the-talk-3

Machine learning for science 2 g

 Machine learning techniques have provento ":

s
N vy 3

be very powerful in scientific data analysis: ;=

Observed

- Neural nets where feature engineering is hard, ot g -

- SVMs, gradient boosted trees, etc. where feature MR |

engineering IS easy. AU e

» Many applications in High Energy Physics L el

(HEP) and Cosmology at Fermilab. coe ok el
- “Event reconstruction” (advanced feature 3. Caldeira, B. Nord, et al., https://arxiv.org/abs/1810.01483

Keras

engineering) o
- Signal / background separation

~ his 4 ml
- Physics parameter extraction owers) [ _,‘/

Co-processing kernel

nversion i
conversio Custom firmware

- “Fast ML” for triggering Usuol mochine loorning ; desion

software workflow

* ML shows up almost everywhere... s/

https://fastmachinelearning.org/hls4ml/

2t Fermilab
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Machine learning for science

* Machine learning techniques have proven to
be very powerful in scientific data analysis: . Machineleaming.
- Neural nets where feature engineering is hard, ‘ e |
- SVMSs, gradient boosted trees, etc. where feature
engineering is easy.
* Many applications in High Energy Physics
(HEP) and Cosmology at Fermilab.
- “Event reconstruction” (advanced feature
engineering)
- Signal / background separation
- Physics parameter extraction
- “Fast ML” for triggering 10:16 AM - Aug 9, 2018 - Twitter for iPhone

O ML ShOWS up aImOSt everyWhere. o 3.8K Retweets and comments 14.4K Likes

https:/ /fastmachinelearning.org/hls4ml/

2= Fermilab
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Quantum machine learning

* Science mission: to explore the application of “quantum machine learning” to
scientific data.

- Structured
- Data generation process may be messy / unknown / the goal of a science effort.

[1] V. Havlicek, A. D. Coércoles, K. Temme, A. W. Harrow,
A. Kandala, J. M. Chow, and J. M. Gambetta, Super-

° “Quantum ML” means dlfferent thlngs dependlng on What the vised learning with quantum-enhanced feature spaces,
i ) i Nature 567, 209 (2019).
data source and algorithm’s physical substrate are. 2) M. Schutd and N il an. Quantum machine leaning
 Most experimental and theoretical work in QML focuses on oty spaces, Pys, Bev. Lett. 133, DO
' ata processing device

using a quantum processor to analyze classical data.

* Analyzing quantum data on a classical machine usually
becomes a control problem, or a program optimization problem.

* Analyzing quantum data with a quantum processor makes the
most sense in the context of analyzing the output of quantum
sensors or the output of another quantum computer - we can't
store entangled states for long periods of time!

@
@
@
&

QC [QQ

C' - classical, Q) - quantum

2= Fermilab

data generating system
M. Schuld and F. Petruccione

Springer Press, 2018

14 2021/8/4 — Gabriel Perdue // @Fermilab 2021 Summer Student School at LNF



AUTOMATED QUANTUM PROGRAMMING

Classical ML for quantum computing

FOR COMBINATORIAL OPTIMIZATION

* Quantum computers require exponential resources to araph, g » o
simulate even at high levels of abstraction. Traditional o T ™| e Program
HEP approaches (build a simulation, tune it perfectly, I https://arxiv.org/abs/1908.08054
and use that as the base for analysis) don’t scale well in observation, | | program
the quantum regime. B
* We need heuristic algorithms that are capable of ‘ )
capturing the essential details, and without the need to recouree
write down a physically-motivated model. ) ’ QAOA : Untrained : Trained

ML excels at this application.

* Example - building and compiling optimal quantum
programs (circuits) is an NP-hard graph problem.

* Researchers have successfully trained T il T it T el
reinforcement learning (RL) agents - the same
essential algorithm used to train game-playing
agents like AlphaZero - to build quantum circuits for
combinatorial optimization problems.

o | (QPU)

2t Fermilab
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Different eras of QML (emphasis on CQ QML) - Pre-NISQ

* “NISQ” - Noisy Intermediate Scale Quantum computers, a term offered by J. Preskill (https://
arxiv.org/abs/1801.00862) - defines the “modern” era of quantum computers.

* In the pre-NISQ era (before we had hardware sizes larger than one qubit), all algorithmic work
was necessarily theoretical. Researchers assumed all-to-all connectivity and the availability of
an arbitrary number of error-corrected qubits when developing algorithms.

* One early approach leveraged the Harrow-Hassidim-Lloyd (2009) algorithm for a quantum
solution to a linear system of equations (quantum - polylog(N), classical - linear in N, certain
conditions required). Here the QPU acts to greatly speed up a subroutine in a fundamentally
classical algorithm.

* Another early approach leveraged the quantum adiabatic algorithm (annealing, tunneling), eg.
Farhi et al (2001), Nishimori (1998). In this approach we encode the problem into a
Hamiltonian where the ground state holds the solution. We prepare the ground state via the
adiabatic theorem, e.g. evolve:

H(s)=(1—-s)H,+ sHy

2t Fermilab
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Different eras of QML (emphasis on CQ QML) - Pre-NISQ

» Some issues with bringing pre-NISQ work to today:
« HHL

- Requires error correction
- Requires gRAM for data loading

- Very interesting challenges from improved classical algorithms inspired by quantum
breakthroughs (a common story!), e.g. E. Tang https://arxiv.org/abs/1807.04271, E. Tang
https://arxiv.org/abs/1811.00414

* Annealing

- When the problem is hard, the energy separation between states shrinks exponentially -
not clear if quantum advantage is possible for interesting datasets and the problem gets
much worse at finite temperature (e.g., D-Wave).

* See, e.g. 2017 review by Biamonte et al (Nature)

2= Fermilab
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https://arxiv.org/abs/1811.00414

Different eras of QML (emphasis on CQ QML) - NISQ

* Black box - build it and see if it works. Example: variational quantum circuit

Training set

Quantum Computer %
Cost function E—— TP

Ansatz > f 19 ) h

Input 0 o
O
= Output
=t
S
= Quantum state
;8; Optimizer Probability distribution

arg min C(60) Bitstring

0 Gate sequence

mw g Quantum operator

Hybrid Loop

FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function
C'(0) which encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a
set of training data used during the optimization. At each iteration of the loop one employs a quantum computer to efficiently
estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers
to navigate the cost landscape and solve the optimization problem in Eq. (1). Once a termination condition is met, the VQA
outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. In the figure
are indicated some of the most common types of output.

https://arxiv.org/abs/2012.09265

2= Fermilab
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Different eras of QML (emphasis on CQ QML) - NISQ

* Black box - build it and see if it works. Example: variational quantum circuit

Eigensolver

e.g. Nat. Commun. 5, 4213 (2014) Machine learning
Nature 549, 242-246 (2017) e.g. Nature 567, 209 (2019)
Encode data to VQC, inner product
. ; .
H = E h o g h]ﬁ o of the produced states provides
iot ijo 3 kernel function between data---use
__________________________________________________________________ guantum state as feature map:
L Q uantum _vgr_leitional eigensolver , .
: E Quantum expectation estimation i E SUCh funCtlonS can be hard tO
i i N realize on a classical computer
- B : :
| s 1B {Fo) 5 5 b
- H-— g : I H 4 F
E % Quantum module 3 A _‘Z‘% — i H A H R C o N B
E g | é : Df H Dg _ :;2 _
I = I O ; .
| - i 1
i E i H H i N
L | ¢ zmerefg ewmwan. [T
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Problems with VQC

* Many, but an example - “barren plateaus”

Very easy to have a circuit ansatz where gradients
are exponentially suppressed by the large Hilbert
space. Optimization of the circuit parameters (already
a very hard problem with no obvious path to scaling
up) becomes impossible.

Roughly, log(depth) is the maximum we can sustain
for a circuit to be trainable.

VQC likely cannot solve NP complete problems
encoded on a Hamiltonian ground state.

For easy problems, the circuit may have structure and
the barren plateau problem may be under control.

* See also: https://journals.aps.org/prxquantum/abstract/
10.1103/PRXQuantum.2.010103 and

+ https://dx.doi.org/10.1038/s41467-021-22539-9
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a) Global Cost Function

Depth O(1) i 0Uog(n) [O(poly(log))i O(poly(n)
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b) Local Cost Function
Depth O(1) . O(log(n)) éO(POZYA(lAOg(n)))E A(Z(POZ}’(”)A)A
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Work: Trainable

Transition

y
Barren Plateau [9]

https://www.nature.com/articles/s41467-021-21728-w
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https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.010103
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.010103
https://dx.doi.org/10.1038/s41467-021-22539-9

Example: Finding exploding stars with quantum computers

* Binary classification: Type Il vs Type la supernovae (balanced 50/50 in this dataset).
 Dataset is time series values In different astronomical observational bands.

* These are Fourier transformed, and paired with distribution statistics (mean, skew, etc.) - 67
floating point numbers with some renormalization.

» Same starting point as a science analysis - no preprocessing for dimensionality reduction.

Z= 0.0] =—

Allam Jr, et al, 2018 2 =050 ===

u

=
©

O
&0

O
~

o
N

normalized flux (curves) or filter transmission (bands)
o
(@)]

O
o

wavelength [Angstrom]

Two supernovae overlaid with ugrizy filter transmission.
Red-shifted event is further away.
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Experiment workflow

* Encode each event using

Final train/test score

qubit rotations, scramble R L
with entangling gates. fig Hyperparameter tuning g
» Compute UUT - {8 Suport vectr achine N

effectively an overlap

measure (probability of all U iz ds .'@6\%67 _PO)
0’s bitstring). A\\'ﬁb\' \*v\ y @“@ .
. Event vs event *§\\\\\ = %
. 5 N NS\
COmPUtatIOn (SO O(N ) 5000 x O(N?) experiments

with dataset size).

* Feed the resulting matrix
to a classical SVM.

* See also: https://arxiv.org/abs/2105.02276
* https://github.com/thubregtsen/ghack
* (And follow the references...)

2= Fermilab

22 2021/8/4 — Gabriel Perdue // @Fermilab 2021 Summer Student School at LNF


https://arxiv.org/abs/2105.02276
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Circuit Ansatz

 Tested approaches in the literature at project

iInception - inner products (kernel elements)
shrank with growing Hilbert space - O(2™1).
- Serious problem with a fixed shot budget.

i+ » Avoid this by fixing the parameter count with

7 - Statistical error still degrades SVM accuracy -
empirically studied here.

Note: Type 1 circuits required dimensionality
reduction as data dimension was coupled to Nq.

2 4 6 8 10 12 14 16

Ul(z;) | UT(a:j)
a. A —i— NG .
- respect to n.
| a.
b.
- H H[R.(v1)HRy(x2) R, (73)- f
C. g w7
[ ] (V200 0
. 1 10 14 0 0
=\/1SWAP=E 01 0
) i \0 0 0 V2
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Number of qubits
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Error mitigation

* Some early projects (build a noise model
and use simulation to “unfold”) did not scale
for more than a handful of qubits.

 Qubit selection handled by an automated
graph traversal algorithm with scoring
function that weighted vertices and edges
with calibration data (logarithmic function for . -
T1, T2, plus cross-entropy benchmarks).

* Hamming-weigh truncated readout error
correction (truncation required due to
scaling problems in O(2") matrix inversion).

- Only needed to model at most one
simultaneous readout error for a
computationally efficient correction.

- See https://arxiv.org/abs/2105.08161for
an extension of this method.

18.2 11.2 wemm 15.0
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https://arxiv.org/abs/2105.08161

Qubits 10 14 17

Depth 35(27)  23(17)  21(15)
ViSWAP layers 8 4 4
ViSWAP ct. 40 28 32
1q rot. ct. 254(174) 246(162) 270(170)
b.
10 qubits) o
17 qubits -
C.
- Noiseless Experiment
0.9 { }
0.8 -
>
o
©
3
&, 0.7 - y . o
0.6
e Train Test
05 e I A, Rar.]dor:n Gu.essmg ..........
10 14 17 10 14 17

Number of qubits

Results

* Final classifier accuracy not driven by the number
of qubits.

» Main advantage of higher qubit count (and
increased depth) - encode data of higher
dimension.

* Kernel classifier method shows intriguing intrinsic
robustness against noise - even in cases where
circuit fidelity was low we were able to achieve
interesting classification accuracies.

» Competitive with noiseless simulation and
classical benchmarks.

See also: https://arxiv.org/abs/2105.03406 for the new “qubit record” in a kernels algorithm plus
some good ideas about what sort of dataset might be amenable to a quantum advantage.

2= Fermilab
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Moving towards QQ QML...

Rethink about many machine learning tasks

, Data processing inequality:
One way to benefit from quantum . tormance limited by

measurement noise

\ ”~
~
@
>
Light source , Sensor
Reflection
Classical data
\ g
Encode classical data
Decision: itisa car < — T /\ _ toquantum:
N g gRAM or VQC
Quantum il
Processor: (i

supervised | &

classification =~

Rethink about many machine learning tasks

Our way of benefiting from quantum: the sensing process is described
by quantum physics

oy
~ - ,i‘ ..,‘t ;\
¥
Quantum Quantum Decision:
: ecision:
: Reflection: m I
light source eflection: modeled as Sensors + 1S 3 car
guantum channels
4 N\ T =y R
— — 2
Input
state vQC VQC : MLE
I —_— zxX
- Y N J L y El
Measurement

Quantum source

prepared by a VQC performed by a VQC

Figures courtesy of Quntao Zhuang (U. of Arizona)
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Supervised learning assisted by an entangled sensor

network (SLAEN)
* See https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.041023 for theory.

Experiment demonstration

Experiment demonstration
Phys. Rev. X 11, 021047(2021) Phys. Rev. X 11, 021047(2021)
Featured in Physics 14, 79 (2021)
c Experiment

b Experiment
SLAEN

e Three sensors. Featured in Physics 14, 79 (2021) ) ‘ ‘
Entanglement reconfigurable by beamsplitters. a Experiment
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Experiment led by Zheshen Zhang
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Special thanks to Q. Zhuang (U. of Arizona) for slide content and figures.
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Conclusions

* Quantum computing is a powerful alternative to von Neumann architectures.

* |t is specialized though - it has algorithm specific advantages and is limited by
severe engineering challenges.

* Machine learning may prove to be a very interesting application space for
guantum computing.

- Quantum algorithms run on classical data are not very promising in the near term, although
everyone is trying to do this (and this is the bulk of the literature, discussion).

- Classical machine learning to help operate a quantum computer however, is extremely
promising!
- Even more interesting is quantum ML algorithms run on quantum data (output from another
computer, or a network of sensors).
* Young minds must bring creative ideas, especially for utilizing quantum sensors!

- Also promising: quantum generative networks.

2t Fermilab
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