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Overview
•Computing… what is it? (An opinion.)
•Quantum computing… what is it? (Another opinion.)
• Flavors of quantum machine learning
- Classical data on quantum machines
- Classical ML for quantum machines
- Quantum data on quantum machines
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Note: I am not discussing machine learning (ML) in an introductory or pedagogical way. I 
assume the audience knows the basic concepts of ML, and has some familiarity with famous 
algorithms like Support Vector Machines (SVMs), decision trees, and neural networks. Expert 
knowledge of these topics is not required, but everyone hopefully understands the idea of 
heuristic algorithms that may be tuned by (or fit to) data.
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What is computing?
• First, what is computing? One perspective - it is physical simulation of algorithms 

coupled to interpretation. We manipulate a physical system according to rules. A 
metaphysical tower of concepts then allows us to interpret the results.
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We can simulate algorithms blindly 
- ultimately interpretation is required.

Certain physical systems can be 
manipulated very quickly - making 
algorithm simulation also very fast.
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What is classical computing?
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What is quantum computing?
• Quantum computing is using quantum systems to 

simulate our algorithms.
• Challenges are rooted in the fact that quantum 

systems are delicate. And algorithms are non-
obvious.

• Multiple, “competing” platforms for quantum 
computation exist. The ultimate goals are scale 
and quantum error correction.
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https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html
https://sqms.fnal.gov/research/

https://www.honeywell.com/en-us/company/quantum
https://www.xanadu.ai/hardware

There are many ways to leverage quantum 
systems to simulate an algorithm. Features of 
quantum measurement mean the calculations 
are probabilistic.
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What is quantum computing?
• At heart, quantum computing is unitary evolution of quantum states.
• It is distinguished by the following features:
- Entanglement
- Unitary evolution
- Superposition of states
- Reversible computation
- Probabilistic computation
- Exponential Hilbert spaces
- Challenges with state coherence
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Quantum operators rotate the vector’s direction.
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What is quantum computing?
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What is quantum computing?
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Super hand-wavy “quantum advantages”
• Superposition lets us create a sum state with two operations 

instead of four.
• Entanglement means we can manipulate the entire state vector 

with one operation.
• Exploiting these operations with provable speedup is actually 

pretty hard! (Consider measurement if nothing else…)

Circuit composer: https://quantum-computing.ibm.com/
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The Quantum Circuit

10 https://quantum-computing.ibm.com/composer
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The Quantum Circuit

11 https://quantum-computing.ibm.com/composer
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What is quantum computing good for?
• Many things (cryptography, communications, etc.), but the “commercial 

killer app” will probably be the first proposal*: the simulation of quantum 
systems - and the money is in chemistry now. Quantum computers will 
ultimately be able to do something classical computers will never be able 
to do - simulate exactly the behavior of molecules with complex electron 
behavior.

• The physics undergirding this is that of a system of interacting fermions.
• There are fewer commercial applications in the simulation of, say, nuclear 

matter in neutrino-nucleus scattering, but we can benefit from the 
commercially motivated research in quantum chemistry a great deal!

• Why is quantum computing powerful?
- https://www.smbc-comics.com/comic/the-talk-3
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Machine learning for science
• Machine learning techniques have proven to 

be very powerful in scientific data analysis:
- Neural nets where feature engineering is hard,
- SVMs, gradient boosted trees, etc. where feature 

engineering is easy.
• Many applications in High Energy Physics 

(HEP) and Cosmology at Fermilab.
- “Event reconstruction” (advanced feature 

engineering)
- Signal / background separation
- Physics parameter extraction
- “Fast ML” for triggering
• ML shows up almost everywhere…
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2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

Observed (Q, U) Reconstructed (E, κ)

J. Caldeira, B. Nord, et al., https://arxiv.org/abs/1810.01483

https://fastmachinelearning.org/hls4ml/

https://arxiv.org/abs/1810.01483
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Machine learning for science
• Machine learning techniques have proven to 

be very powerful in scientific data analysis:
- Neural nets where feature engineering is hard,
- SVMs, gradient boosted trees, etc. where feature 

engineering is easy.
• Many applications in High Energy Physics 

(HEP) and Cosmology at Fermilab.
- “Event reconstruction” (advanced feature 

engineering)
- Signal / background separation
- Physics parameter extraction
- “Fast ML” for triggering
• ML shows up almost everywhere…
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2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

Observed (Q, U) Reconstructed (E, κ)

J. Caldeira, B. Nord, et al., https://arxiv.org/abs/1810.01483

https://fastmachinelearning.org/hls4ml/

https://arxiv.org/abs/1810.01483
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Quantum machine learning
• Science mission: to explore the application of “quantum machine learning” to 

scientific data.
- Structured
- Data generation process may be messy / unknown / the goal of a science effort.
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QMLQCF Meeting, Feb 2019

QMLQCF
Quantum Machine Learning

Quantum Computation Framework

1.1 Background 5

1.1.3 Four Approaches

As mentioned before, there are several definitions of the term quantum machine
learning, and in order to clarify the scope of this book it is useful to locate our
definition in the wider research landscape. For this we use a typology introduced
by Aimeur, Brassard and Gambs [10]. It distinguishes four approaches of how to
combine quantum computing and machine learning, depending on whether one as-
sumes the data to be generated by a quantum (Q) or classical (C) system, and if the
information processing device is quantum (Q) or classical (C) (see Fig. 1.1).

The case CC refers to classical data being processed classically. This is of course
the conventional approach to machine learning, but in this context it relates to ma-
chine learning based on methods borrowed from quantum information research. An
example is the application of tensor networks, which have been developed for quan-
tum many-body-systems, to neural network training [11]. There are also numerous
‘quantum-inspired’ machine learning models, with varying degrees of foundation in
rigorous quantum theory.

The case QC investigates how machine learning can help with quantum comput-
ing. For example, when we want to get a comprehensive description of the internal
state of a quantum computer from as few measurements as possible we can use ma-
chine learning to analyse the measurement data [12]. Another idea is to learn phase
transitions in many-body quantum systems, a fundamental physical problem with
applications in the development of quantum computers [13]. Machine learning has
also been found useful to discriminate between quantum states emitted by a source,
or transformations executed by an experimental setup [14–16], and applications are
plenty.

In this book we use the term ‘quantum machine learning’ synonymously with the
remaining CQ and QQ approach on the right of Fig. 1.1. In fact, we focus mainly

Fig. 1.1 Four approaches
that combine quantum
computing and machine
learning
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• “Quantum ML” means different things depending on what the 
data source and algorithm’s physical substrate are.

• Most experimental and theoretical work in QML focuses on 
using a quantum processor to analyze classical data.

• Analyzing quantum data on a classical machine usually 
becomes a control problem, or a program optimization problem.

• Analyzing quantum data with a quantum processor makes the 
most sense in the context of analyzing the output of quantum 
sensors or the output of another quantum computer - we can’t 
store entangled states for long periods of time!

6
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Ishida, S. W. Jha, D. O. Jones, R. Kessler, M. Lochner,
A. A. Mahabal, A. I. Malz, K. S. Mandel, J. R. Mart́ınez-
Galarza, J. D. McEwen, D. Muthukrishna, G. Narayan,
H. Peiris, C. M. Peters, K. Ponder, C. N. Setzer, The
LSST Dark Energy Science Collaboration, and The LSST
Transients and Variable Stars Science Collaboration, The
photometric lsst astronomical time-series classification
challenge (plasticc): Data set (2018), arXiv:1810.00001
[astro-ph.IM].

[15] Vera C. Rubin Observatory, https://www.lsst.org/
about (2020).

[16] Q. A. team and collaborators, Cirq (2020).
[17] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V.

Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro,



2021/8/4 — Gabriel Perdue // @Fermilab 2021 Summer Student School at LNF

Classical ML for quantum computing
• Quantum computers require exponential resources to 

simulate even at high levels of abstraction. Traditional 
HEP approaches (build a simulation, tune it perfectly, 
and use that as the base for analysis) don’t scale well in 
the quantum regime.

• We need heuristic algorithms that are capable of 
capturing the essential details, and without the need to 
write down a physically-motivated model.

• ML excels at this application.
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ABSTRACT

We develop a general method for incentive-based programming of hybrid quantum-classical com-
puting systems using reinforcement learning, and apply this to solve combinatorial optimization
problems on both simulated and real gate-based quantum computers. Relative to a set of randomly
generated problem instances, agents trained through reinforcement learning techniques are capable of
producing short quantum programs which generate high quality solutions on both types of quantum
resources. We observe generalization to problems outside of the training set, as well as generalization
from the simulated quantum resource to the physical quantum resource.

1 Introduction

One of the earliest ambitions of artificial intelligence research was to consider ways of mechanizing the task of computer
programming itself, via the automated synthesis of programs from high level specifications. There is rich literature on
such techniques, including a range of meta-heuristic [33, 8] and machine learning approaches [22] (cf. [20] for a recent,
broad survey on program synthesis). Such ideas are potentially compelling for the programming of quantum computers,
due to both the unintuitive nature of these devices as well as the unique challenges presented by near-term hardware.

To this end, we explore reinforcement learning for automated program synthesis in the context of a hybrid classical-
quantum computing architecture, considering both simulated and physical gate-based quantum computers. We explore
the application of this framework to solve a range of combinatorial optimization problems (COPs). This class of
problems is of particular interest in the quantum computing domain due to the emergence of new quantum heuristics for
both adiabatic [14] and gate-model [21, 17] quantum computing. From an application perspective, these optimization
problems are ubiquitous and of very high value to many processes in industry.

Reinforcement learning techniques applied to quantum computation have found success in a range of contexts, including
quantum error correction [18], as well as noisy control for gate design [2, 32] and state preparation [11, 10, 5, 1, 39].
Here we utilize reinforcement learning directly at the application level to solve COP programming tasks.

Combinatorial optimization has proven to be a popular target domain for machine learning methods. This work dates
back to at least the last machine learning cycle of the 1980s and 1990s, where Hopfield networks were used to model a
variety of problem types [35]. More recently, state of the art techniques such as recurrent encoder/decoder networks [38,
6], graph embeddings [24], and attention mechanisms [28] have been used to solve a range of COPs. Note that, in these
applications, machine learning has been used either end-to-end to map directly from a problem instance to a solution, or
alternatively as a subroutine of an already existing heuristic. For a comprehensive discussion of this intersection of
domains, see Ref. [7].

In what follows, we detail the design considerations involved in defining an effective reinforcement learning environment,
with particular emphasis on the definition of the state space, action space, and reward function. We subsequently apply
this framework to train reinforcement learning agents to generate quantum programs solving combinatorial optimization
problems on both simulated and real quantum resources. Relative to a test set of randomly generated problem instances,
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• Example - building and compiling optimal quantum 
programs (circuits) is an NP-hard graph problem.

• Researchers have successfully trained 
reinforcement learning (RL) agents - the same 
essential algorithm used to train game-playing 
agents like AlphaZero - to build quantum circuits for 
combinatorial optimization problems.

we observe that the mean performance of the trained agents exceeds the performance of both untrained agents as well
as that of the leading near-term hybrid quantum algorithm typically used to solve combinatorial optimization problems,
the quantum approximate optimization algorithm (QAOA) [17]. Following this, we briefly analyze and discuss agent
strategy, consider limitations of the current work, and note promising avenues forward.

2 Learning environment

In this section we broadly identify the aspects of the hybrid classical/quantum environment relevant to reinforcement
learning. In particular, we indicate the state space and observations of it, the available actions, the reward, and the
learning agent. These specifications have been implemented using the standard environment API proposed by OpenAI
Gym [9]. This implementation was used to conduct all experiments contained in this study.

At a high level, the framework we propose is as follows. A reinforcement learning agent, executing on a classical
computing resource, incrementally produces a quantum program for execution on a quantum resource, with the goal of
preparing a quantum state which serves to solve some posed problem. In the examples we consider, the problem may be
described by the specification of a ‘problem instance’ (e.g. a weighted graph) and a ‘reward function’ (detailed below).

This process is illustrated in Fig. 1. At the outset, the problem reward function, and graph to be evaluated in the context
of this reward function are specified. Given this information, the agent produces a quantum program by iterating the
following steps: i) the agent chooses from some available quantum gates to append to the current program, ii) the
updated program is evaluated on a quantum resource, perhaps several times, and iii) the results of these evaluations are
used to compute a reward and an ‘observation’. The results of step (iii) are subsequently used in the decision criteria
of step (i) of the next iteration, and so on. This interaction between the agent and quantum resource is repeated until
the agent ‘wins’, wherein the reward exceeds some threshold, or ‘loses’, wherein the program length exceeds some
threshold.

Figure 1: Interaction of a learning agent with a quantum resource for the automated generation of reward-specific
quantum programs. The quantum resource may be either a quantum simulation or a physical quantum processor. The
win/lose criteria must be defined in the environment.

In the case of combinatorial optimization problems, one may naturally identify the reward of a quantum state | i as the
cost Hamiltonian’s expectation value. More generally, any monotonic function of the expectation serves as an adequate
surrogate. For the experiments which follow, we have found it convenient to rescale the cost Hamiltonian’s expectation
to take values in the range 0 to 1. We identify the action space A as a finite set of quantum gates, such as a discretized
set of RZ and RY rotation gates. For the agent, we focus exclusively on the PPO (Proximal Policy Optimization, cf.
[34]) algorithm, applied to a shared actor-critic architecture.

A reinforcement learning problem is formally specified as a Markov Decision Process (MDP), for which the goal of the
learning agent is to find the optimal policy, i.e. the conditional probability ⇡⇤(a|s) of applying a particular quantum gate
(action a) given a particular representation of the qubit register (state s) that would maximize the expected (discounted)
return E⇡[

P1
k=0 �

k
rk+1], without necessarily having a model of the environment p(s0, r|s, a). Defining the value of a

state s under a policy ⇡ as

V⇡(s) = E⇡

" 1X

k=0

�
k
rt+k+1

�����St = s

#
(1)

2

Figure 2: Distribution of episode scores, with respect to the test dataset, for each COP on the quantum simulator (top),
and on the quantum processor (bottom), and for the QVM-trained agent (dark gray), the untrained agent (red), and the
QAOA (blue). Overall, the QVM-trained agent yields the highest expected test performance for all problems on both
the simulated and physical quantum resources.

Figure 3: Program length corresponding to the episode scores given in Fig. 2 for each COP on the quantum simulator
(top), and on the quantum processor (bottom) for the QVM-trained agent (dark gray), the untrained agent (red), and the
QAOA (blue). Through training, on both resources, shorter programs are generated by the agent.
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Different eras of QML (emphasis on CQ QML) - Pre-NISQ
• “NISQ” - Noisy Intermediate Scale Quantum computers, a term offered by J. Preskill (https://

arxiv.org/abs/1801.00862) - defines the “modern” era of quantum computers.
• In the pre-NISQ era (before we had hardware sizes larger than one qubit), all algorithmic work 

was necessarily theoretical. Researchers assumed all-to-all connectivity and the availability of 
an arbitrary number of error-corrected qubits when developing algorithms.

• One early approach leveraged the Harrow-Hassidim-Lloyd (2009) algorithm for a quantum 
solution to a linear system of equations (quantum - polylog(N), classical - linear in N, certain 
conditions required). Here the QPU acts to greatly speed up a subroutine in a fundamentally 
classical algorithm.

• Another early approach leveraged the quantum adiabatic algorithm (annealing, tunneling), eg. 
Farhi et al (2001), Nishimori (1998). In this approach we encode the problem into a 
Hamiltonian where the ground state holds the solution. We prepare the ground state via the 
adiabatic theorem, e.g. evolve:

16

<latexit sha1_base64="7xQtnYP3ikJ8fsUnBYwJJwpBegg=">AAACGXicbZDLSgMxFIYz9VbrbdSlm2ARKmKZUVE3QtFNlxXsBTrDkEkzbWjmQnJGKKWv4cZXceNCEZe68m1M20G09UDIz/efQ3J+PxFcgWV9GbmFxaXllfxqYW19Y3PL3N5pqDiVlNVpLGLZ8oligkesDhwEayWSkdAXrOn3b8Z+855JxePoDgYJc0PSjXjAKQGNPNOqOoIFUFKO5N0eHOIrPAU2PsY/sOol+AgrfVueWbTK1qTwvLAzUURZ1Tzzw+nENA1ZBFQQpdq2lYA7JBI4FWxUcFLFEkL7pMvaWkYkZModTjYb4QNNOjiIpT4R4An9PTEkoVKD0NedIYGemvXG8D+vnUJw6Q55lKTAIjp9KEgFhhiPY8IdLhkFMdCCUMn1XzHtEUko6DALOgR7duV50Tgp2+fl09uzYuU6iyOP9tA+KiEbXaAKqqIaqiOKHtATekGvxqPxbLwZ79PWnJHN7KI/ZXx+A6ZunYw=</latexit>

H (s) = (1� s)Hp + sH0

Special thanks to Q. Zhuang (U. of Arizona) for slide inspiration.

https://arxiv.org/abs/1801.00862
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Different eras of QML (emphasis on CQ QML) - Pre-NISQ
• Some issues with bringing pre-NISQ work to today:
• HHL
- Requires error correction
- Requires qRAM for data loading
- Very interesting challenges from improved classical algorithms inspired by quantum 

breakthroughs (a common story!), e.g. E. Tang https://arxiv.org/abs/1807.04271, E. Tang 
https://arxiv.org/abs/1811.00414

• Annealing
- When the problem is hard, the energy separation between states shrinks exponentially - 

not clear if quantum advantage is possible for interesting datasets and the problem gets 
much worse at finite temperature (e.g., D-Wave).

• See, e.g. 2017 review by Biamonte et al (Nature)

17 Special thanks to Q. Zhuang (U. of Arizona) for slide inspiration.

https://arxiv.org/abs/1811.00414
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Different eras of QML (emphasis on CQ QML) - NISQ
• Black box - build it and see if it works. Example: variational quantum circuit
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FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function
C(✓) which encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a
set of training data used during the optimization. At each iteration of the loop one employs a quantum computer to efficiently
estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers
to navigate the cost landscape and solve the optimization problem in Eq. (1). Once a termination condition is met, the VQA
outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. In the figure
are indicated some of the most common types of output.

VQAs are arguably the natural quantum analog of the
highly successful machine-learning methods employed in
classical computing, such as neural networks. Moreover,
VQAs leverage the toolbox of classical optimization,
as VQAs employ parametrized quantum circuits to be
run on the quantum computer, and then outsource the
parameter optimization to a classical optimizer. This
has the added advantage of keeping the quantum circuit
depth shallow and hence mitigating noise, in contrast to
quantum algorithms developed for the fault-tolerant era.

VQAs have now been proposed for a plethora of ap-
plications, covering essentially all of the applications
that researchers have envisioned for quantum computers.
While they may be the key to obtaining near-term quan-
tum advantage, VQAs still face important challenges, in-
cluding their trainability, accuracy, and efficiency. In this
review, we discuss the exciting prospects for VQAs, and
we highlight the challenges that must be overcome to ob-
tain the ultimate goal of quantum advantage.

The structure of this review is as follows. In Section II
we introduce the basic framework behind VQAs. Therein
we present a general description of cost functions, and we
discuss some of the most widely used ansatze and opti-
mizers. Then, in Section III we present different applica-
tions for VQAs ranging from finding ground and excited
states, quantum simulation, optimization, and machine
learning, among others. Section IV contains a discussion
of the main challenges (and their potential solutions) for
VQAs. These encompass trainability problems such as
barren plateaus, the effect of hardware noise, and error
mitigation techniques. In Section V we discuss oppor-
tunities where VQAs could be employed for obtaining
quantum advantage in the near-term. Such applications
include using VQAs to solve problems in quantum chem-
istry, nuclear and particle physics, and for optimization

and machine learning. Finally, Section VI contains our
final discussions and outlooks.

II. BASIC CONCEPTS AND TOOLS

One of the main advantages of Variational Quantum
Algorithms (VQAs) is that they provide a general frame-
work that can be used to solve a wide array of problems.
While this versatility translates into different algorith-
mic structures with varying levels of complexity, there
are basic elements that most (if not all) VQAs share in
common. In this section we review the building blocks of
VQAs in the hope that these can be used as blueprints
for the development of novel algorithms.

Let us start by considering a task one wishes to solve.
This implies having access to a description of the prob-
lem, and also possibly to a set of training data. As
schematically shown in Fig. 1, the first step to devel-
oping a VQA is to define a cost (or loss) function C
which encodes the solution to the problem. One then
proposes an ansatz, i.e., a quantum operation depending
on a set of continuous or discrete parameters ✓ that can
be optimized (see below for a more in-depth discussion
of ansatze). This ansatz is then trained (with data from
the training set) in a hybrid quantum-classical loop to
solve the optimization task

✓⇤ = argmin
✓

C(✓) . (1)

The trademark of VQAs is that they employ a quantum
computer to estimate the cost function C(✓) (or its gra-
dient) while leveraging the power of classical optimizers
to train the parameters ✓. In what follows, we provide

Special thanks to Q. Zhuang (U. of Arizona) for slide inspiration.

https://arxiv.org/abs/2012.09265
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Different eras of QML (emphasis on CQ QML) - NISQ
• Black box - build it and see if it works. Example: variational quantum circuit
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NISQ Quantum machine learning: black-box approach
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Approach from an engineering perspective: build things and see how it works

Black-box: varia?onal quantum circuit (VQC) approach

Eigensolver
e.g. Nat. Commun. 5, 4213 (2014)
Nature 549, 242–246 (2017)

Machine learning
e.g. Nature 567, 209 (2019)

Encode data to VQC, inner product 
of the produced states provides 
kernel func?on between data---use 
quantum state as feature map: 
such func?ons can be hard to 
realize on a classical computer
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Problems with VQC
• Many, but an example - “barren plateaus”
- Very easy to have a circuit ansatz where gradients 

are exponentially suppressed by the large Hilbert 
space. Optimization of the circuit parameters (already 
a very hard problem with no obvious path to scaling 
up) becomes impossible.

- Roughly, log(depth) is the maximum we can sustain 
for a circuit to be trainable.

- VQC likely cannot solve NP complete problems 
encoded on a Hamiltonian ground state.

- For easy problems, the circuit may have structure and 
the barren plateau problem may be under control.
• See also: https://journals.aps.org/prxquantum/abstract/

10.1103/PRXQuantum.2.010103 and
• https://dx.doi.org/10.1038/s41467-021-22539-9

20 Special thanks to Q. Zhuang (U. of Arizona) for slide inspiration.

Problems for VQC approach: Barren plateau

8

Nat. Commun. 9, 4812 (2018)
Nat. Commun. 12, 1791 (2021)

Nat. Commun. 12, 1791 (2021)

Log depth is maximum in order for a 
typical circuit to be trainable. 

We don’t expect VQC to solve NP 
complete problems encoded on a 
Hamiltonian ground state energy.

For easier problems, the circuit can 
have structure and the barren 
plateau might not show up.

https://www.nature.com/articles/s41467-021-21728-w

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.010103
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.010103
https://dx.doi.org/10.1038/s41467-021-22539-9
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Example: Finding exploding stars with quantum computers
• Binary classification: Type II vs Type Ia supernovae (balanced 50/50 in this dataset).
• Dataset is time series values in different astronomical observational bands.
• These are Fourier transformed, and paired with distribution statistics (mean, skew, etc.) - 67 

floating point numbers with some renormalization.
• Same starting point as a science analysis - no preprocessing for dimensionality reduction.

21

Two supernovae overlaid with ugrizy filter transmission.
Red-shifted event is further away.

Allam Jr, et al, 2018

Brighten and fade (left), repeated brightening (right).

QMLQCF Meeting, Feb 2019

QMLQCF
Quantum Machine Learning

Quantum Computation Framework
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Experiment workflow
• Encode each event using 

qubit rotations, scramble 
with entangling gates.
• Compute UU✝ → 

effectively an overlap 
measure (probability of all 
0’s bitstring).
• Event vs event 

computation (so O(N2) 
with dataset size).
• Feed the resulting matrix 

to a classical SVM.
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...
...

spectral analysis

Preprocessing: log-scale, outlier removal, standardization

CPU
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Support Vector Machine

Hyperparameter tuning

Final train/test score

 datapoints

experiments

FIG. 1: In this experiment we performed limited data preprocessing that is standard for state-of-the-art classical
techniques, before using the quantum processor to estimate the kernel matrix K̂ij for all pairs of encoded datapoints
(xi, xj) in each dataset. We then passed the kernel matrix back to a classical computer to optimize an SVM using
cross validation and hyperparameter tuning before evaluating the SVM to produce a final train/test score.

to complex, non-linear functions in the input space.
Quantum kernel methods can potentially improve the

performance of classifiers by using a quantum computer
to map input data in X ⇢ Rd into a high-dimensional
complex Hilbert space, potentially resulting in a kernel
function that is expressive and challenging to compute
classically. It is di�cult to know without sophisticated
knowledge of the data generation process whether a given
kernel is particularly suited to a dataset, but perhaps
families of classically hard kernels may be shown empir-
ically to o↵er performance improvements. In this work
we focus on a non-variational quantum kernel method,
which uses a quantum circuit U(x) to map real data into
quantum state space according to a map �(x) = U(x)|0i.
The kernel function we employ is then the squared in-
ner product between pairs of mapped input data given
by k(xi, xj) = |h�(xi)|�(xj)i|2, which allows for more
expressive models compared to the alternative choice
h�(xi)|�(xj)i [4].

In the absence of noise, the kernel matrix Kij =
k(xi, xj) for a fixed dataset can therefore be estimated
up to statistical error by using a quantum computer
to sample outputs of the circuit U†(xi)U(xj) and then
computing the empirical probability of the all-zeros bit-
string. However in practice, the kernel matrix K̂ij sam-
pled from the quantum computer may be significantly
di↵erent from Kij due to device noise and readout er-

ror. Once K̂ij is computed for all pairs of input data in
the training set, a classical SVM can be trained on the
outputs of the quantum computer. An SVM trained on
a size-m training set T ⇢ X learns to predict the class
f(x) = ŷ of an input data point x according to the deci-
sion function:

f(x) = sign

 
mX

i=1

↵iyik(xi, x) + b

!
(1)

where ↵i and b are parameters determined during the
training stage of the SVM. Training and evaluating the
SVM on T requires an m⇥m kernel matrix, after which
each data point z in the testing set V ⇢ X may be clas-
sified using an additional m evaluations of k(xi, z) for
i = 1 . . .m. Figure 1 provides a schematic representa-
tion of the process used to train an SVM using quantum
kernels.

A. Data and preprocessing

We used the dataset provided in the Photometric
LSST Astronomical Time-series Classification Challenge
(PLAsTiCC) [14] that simulates observations of the Vera
C. Rubin Observatory [15]. The PLAsTiCC data consists
of simulated astronomical time series for several di↵erent

• See also: https://arxiv.org/abs/2105.02276
• https://github.com/thubregtsen/qhack
• (And follow the references…)

https://arxiv.org/abs/2105.02276
https://github.com/thubregtsen/qhack
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Circuit Ansatz • Tested approaches in the literature at project 
inception - inner products (kernel elements) 
shrank with growing Hilbert space - O(2-n).
- Serious problem with a fixed shot budget.
• Avoid this by fixing the parameter count with 

respect to n.
• Statistical error still degrades SVM accuracy - 

empirically studied here.
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classes of astronomical objects. The time series consist of
measurements of flux at six wavelength bands. Here we
work on data from the training set of the challenge. To
transform the problem into a binary classification prob-
lem, we focus on the two most represented classes, 42
and 90, which correspond to types II and Ia supernovae,
respectively.

Each time series can have a di↵erent number of flux
measurements in each of the six wavelength bands. In
order to classify di↵erent time series using an algorithm
with a fixed number of inputs, we transform each time
series into the same set of derived quantities. These in-
clude: the number of measurements; the minimum, max-
imum, mean, median, standard deviation, and skew of
both flux and flux error; the sum and skew of the ratio
between flux and flux error, and of the flux times squared
flux ratio; the mean and maximum time between mea-
surements; spectroscopic and photometric redshifts for
the host galaxy; the position of each object in the sky;
and the first two Fourier coe�cients for each band, as
well as kurtosis and skewness. In total, this transforma-
tion yields a 67-dimensional vector for each object.

To prepare data for the quantum circuit, we convert
lognormal-distributed spectral inputs to log scale, and
normalize all inputs to

⇥
�⇡

2 ,
⇡
2

⇤
. We perform no di-

mensionality reduction. Our data processing pipeline is
consistent with the treatment applied to state-of-the-art
classical methods. Our classical benchmark is a compet-
itive solution to this problem, although significant addi-
tional feature engineering leveraging astrophysics domain
knowledge could possibly raise the benchmark score by a
few percent.

B. Circuit design

To compute the kernel matrix Kij ⌘ k(xi, xj) over
the fixed dataset we must run R repetitions of each cir-
cuit U †(xj)U(xi) to determine the total counts ⌫0 of the

all zeros bitstring, resulting in an estimator K̂ij = ⌫0
R .

This introduces a challenge since quantum kernels must
also be sampled from hardware with low enough statis-
tical uncertainty to recover a classifier with similar per-
formance to noiseless conditions. Since the likelihood of
large relative statistical error between K and K̂ grows
with decreasing magnitude of K̂ and decreasing R, the
performance of the hardware-based classifier will degrade
when the kernel matrix to be sampled is populated by
small entries. Conversely, large kernel magnitudes are
a desirable feature for a successful quantum kernel clas-
sifier, and a key goal in circuit design is to balance the
requirement of large kernel matrix elements with a choice
of mapping that is di�cult to compute classically. An-
other significant design challenge is to construct a circuit
that separates data according to class without mapping
data so far apart as to lose information about class rela-
tionships - an e↵ect sometimes referred to as the “curse
of dimensionality” in classical machine learning.

a.

b.

c.

FIG. 2: a. 14-qubit example of the type 2 circuit used
for experiments in this work. The dashed box indicates
U(xi), while the remainder of the circuit computes
U†(xj) to ouput |h�(xj)|�(xi)i|2. Non-virtual gates
occurring at the boundary (dashed line) are contracted
for hardware runs. b. The basic encoding block consists
of a Hadamard followed by three single-qubit rotations,
each parameterized by a di↵erent element of the input
data x (normalization and encoding constants omitted
here). c. We used the

p
iSWAP entangling gate, a

hardware-native two-qubit gate on the Sycamore
processor.

For this experiment, we accounted for these de-
sign challenges and the need to accommodate high-
dimensional data by mapping data into quantum state
space using the quantum circuit shown in Figure 2. Each
local rotation in the circuit is parameterized by a single
element of preprocessed input data so that inner prod-
ucts in the quantum state space correspond to a similar-
ity measure for features in the input space. Importantly,
the circuit structure is constrained by matching the input
data dimensionality to the number of local rotations so
that the circuit depth and qubit count individually do not
significantly impact the performance of the SVM classi-
fier in a noiseless setting. This circuit structure consis-
tently results in large magnitude inner products (median
K � 10-1) resulting in estimates for K̂ with very little

11

of qubits. We applied Principal Component Analysis (PCA) [27] to reduce the 67-dimensional data to n dimensions
and then standardized the data to the interval [�⇡/2,⇡/2]. We defined additional hyperparameters (c1, c2) that can
be tuned to optimize the cross-validated performance of the corresponding SVM and control the resulting distribution
of kernel matrix elements. Figure 5a shows that the magnitude of K vanishes with respect to increasing c1, c2 or
number of qubits n. This does not necessarily result low accuracies for the associated SVM classifiers, but describes
a family of kernels that are infeasible to sample on hardware. It is possible to preserve the magnitude of K if c1 and
c2 are scaled down with increasing n but for small enough angles over/under-rotation errors and noise will become
dominating factors in hardware outcomes, while the limit c2 ! 0 results in a circuit that can be simulated trivially.

a. b.

2 4 6 8 10 12 14 16
Number of qubits

10 3

10 2

10 1

100

M
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n
K i
j

Type 1 circuit
Type 2 circuit

...

FIG. 5: Circuit structure and data preprocessing has a large impact on the resulting distributions of kernel matrix
elements. (a) Distributions of median K with respect to a coarse grid search over c1, c2 2 {0.1, 0.15, 0.2, 0.25, 0.3} for
type 1 circuits with n-dimensional PCA compressions as input suggest that vanishing kernel magnitudes (red) make
much of the gridsearch space inaccesible to realistic hardware experiments for even modest numbers of qubits. We
found no such trend in K for type 2 circuits (Equation 2) implemented in our experiments with 67-dimensional
input data.

These results motivate a new approach for encoding data on large numbers of qubits, especially if the input
data dimensionality is large. To compute large-magnitude kernels on high dimensional data without dimensionality
reduction, we designed a circuit encoding to map input data xi, zi 2 X ⇢ Rd into a subspace of C2n using an
approximately orthogonal parameterization of U(2n), the group describing n-qubit unitaries. While examples of
exactly orthogonal parameterizations of U(2n) exist, such as Euler angle parameterization of U(2n) [28], such schemes
are generally ine�cient to implement on hardware. We approximate such an encoding using circuits structured
similarly to the Hardware E�cient Ansatz [29] consisting of an initial layer parameterizing

Nn U(2) interspersed with
local entanglers. This circuit structure (referred to here as “Type 2”) is shown in Figure 2 of the main body and can
be expressed in terms of individual gates as

U(x) =
LY

`=1

UBUA(S`(x)) (B8)

UA(z) =
nO

i=1

H(i)R(i)
z (c1zi2)R

(i)
y (c1zi1)R

(i)
z (c1zi0)

UB =
Y

(i,j)2E(G)

p
iSWAP(i,j)

where E(G) denotes the set of edges composing a length-n simple path permitted by the Sycamore connectivity,
superscript (i) indicates action on qubit i, and S : Rd ! R3n denotes selection of a subset of 3n elements from
the input data to be encoded into a given rotation layer. The specific choice of rotation and entangling gates was
influenced by the gate set available on the processor at the time the experiments were conducted, namely

p
iSWAP

Note: Type 1 circuits required dimensionality 
reduction as data dimension was coupled to NQ.
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Error mitigation
• Some early projects (build a noise model 

and use simulation to “unfold”) did not scale 
for more than a handful of qubits.

• Qubit selection handled by an automated 
graph traversal algorithm with scoring 
function that weighted vertices and edges 
with calibration data (logarithmic function for 
T1, T2, plus cross-entropy benchmarks).

• Hamming-weigh truncated readout error 
correction (truncation required due to 
scaling problems in O(2n) matrix inversion).
- Only needed to model at most one 

simultaneous readout error for a 
computationally efficient correction.

- See https://arxiv.org/abs/2105.08161for 
an extension of this method.
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FIG. 7: Sample results of automated qubit selection with rejected qubits denoted by a red slash. Entangler patterns
(light/dark gray) are overlaid on the Sycamore 23-qubit grid annotated with T1 in µs. No more than 19 qubits may
be assigned to the grid using our connectivity scheme, so that qubit selection has diminishing e↵ects on performance
as n ! 19.

where C1 and C2 represent the calibration metrics corresponding to single and pairs of qubits respectively. We
implemented gp as a logarithmic function for T1, T2, and fXEB,2q metrics and a linear function for p00 and p11 metrics.
Figure 7 shows the results of an example optimization overlaid on T1 calibration results.

3. Readout error correction

Readout error resulting from relaxation and thermal excitation can be modelled by a stochastic bitflip process
applied to the observed bitstrings. Here we describe an e�cient and accurate technique for correcting readout error
for quantum kernel methods.

Let p(yn|xn) describe the conditional probability for observing bitstring yn after exposing the bitstring xn to n
distinct bitflip channels, and let qk(y|x) for x, y 2 {0, 1} describe the corresponding probability for observing bit
“y” after exposing the k-th bit “x” to a single bitflip channel. Then for the k-th qubit, the metrics introduced
in Appendix D 1 as p00 = qk(1|0) and p11 = qk(0|1) may be used to partially undo readout error by means of
postprocessing. We define a response matrix R 2 R2n⇥2n elementwise as (R)xy = p(yn|xn) that contains as its
elements the total probability for transition from bitstring xn = x1 . . . xn to bitstring yn = y1 . . . yn computed as the
product of qk(1|0) and qk(0|1) corresponding to each individual bit:

Rxy ⌘ p(y1 . . . yn|x1 . . . xn) =
nY

k=1

qk(yk|xk) (D3)

For simplicity, we assume that each individual bitflip may be modelled as an independent process, although the
techniques discussed here are readily applicable to a system of dependent bitflips if the bitflip likelihoods are experi-
mentally measured in parallel. Then evidently,

R =
nO

k=1

✓
qk(0|0) qk(0|1)
qk(1|0) qk(1|1)

◆
(D4)

Note that R is generally asymmetric since typically qk(1|0) < qk(0|1). While multiplying R�1 by the set of observed
bitstring frequencies would recover the prior distribution of bitstring frequencies with good fidelity, standard matrix
inversion is subject to instabilities and is not tractable for even modest numbers of qubits.
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Since only the frequency of the all-zero’s bitstring is necessary to compute K̂ij , we implemented correction using a
small subset of bitstring transition probabilities to perform quick and relatively high-fidelity readout error correction
in post-processing. We generated R and then truncated the full 2n-dimensional basis to the bitstring space containing
strings with Hamming weight  kmax for some n-dependent kmax resulting in a truncated response matrix Rt. We
then computed the pseudo-inverse R�1

t and performed error correction by simple matrix multiplication on the array
of experimental readout frequencies (similarly truncated). This simplification comes at the expense of knowledge
about any other post-correction frequencies since the other bitstrings in the truncated space are o↵-center within the
Hamming sphere of kept bitstrings, resulting in a bias in the inverted linear map.

We now analyze the e↵ect of truncation on the readout error correction. The number of simultaneous readout error
events (either relaxation or excitation) may be modelled as an induced random variable Z =

P
k Xk for Pr(Xk =

1) = qk(¬x|x). This distribution has expected value µ =
P

k q
k(¬x|x) and an exponentially suppressed likelihood for

simultaneous readout errors via the Cherno↵ bound Pr(Z � k)  exp(k � µ � k log(k/µ)). Thus a natural measure
for the e↵ect of Hamming weight truncation is the empirical probability allocated to the complement of the truncated
subspace:

Pr(Z > kmax) = 1�
kmaxX

i=0

Pr(Z = i) (D5)

While Equation D5 describes the probability of events outside the truncated subspace, it does not directly translate
to failure probability for truncated readout correction. To explore this e↵ect numerically, we computed the output
probability distributions for a 10-qubit quantum kernel circuit sampled for 5000 repetitions, and then introduced
artificial readout error (using bitflip probabilities taken from the Sycamore processor) followed by roughly 5% Gaussian
noise on the sampled distribution. Figure 8 shows the error distribution as well as the e↵ect of correcting using an
inverted truncated response matrix for a variety of kernel magnitudes and truncation weights. We observed similar
behavior for 14 and 17-qubit simulated experiments; readout error for quantum kernel experiments may be corrected
reasonably well using a small fraction of the full bitflip response matrix.

FIG. 8: Truncated readout error correction for 10 qubit circuit. (left) Correcting on the likely subspace described by
kmax = 1 provides significant error correction, and further increasing kmax provides diminishing returns. Dashed
lines indicate the infinite-shot upper/lower bounds given by Equation E6 (bounds are violated when empirical bitflip
probabilities do not match imposed readout error probabilities); black line indicates perfect error correction. (right)
Empirical probability for transition out of the weight  kmax vanishes exponentially in the highest weight considered.

Figure 8 suggests a linear relationship between the kernel K 0 computed in the presence of readout error and
the noiseless kernel K. While readout error does not constitute a linear process in general (the underlying bitflip
probabilities and bitstring distributions may be modified to give rise to arbitrary e↵ects on K within the bounds of
Equation E6), by the arguments in Section IV demonstrating such an e↵ect in general would imply minimal e↵ect
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https://arxiv.org/abs/2105.08161
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Results
• Final classifier accuracy not driven by the number 

of qubits.
• Main advantage of higher qubit count (and 

increased depth) - encode data of higher 
dimension.
• Kernel classifier method shows intriguing intrinsic 

robustness against noise - even in cases where 
circuit fidelity was low we were able to achieve 
interesting classification accuracies.
• Competitive with noiseless simulation and 

classical benchmarks.
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FIG. 4: a. Parameters for the three circuits
implemented in this experiment. Values in parentheses
are calculated ignoring contributions due to virtual Z
gates. b. The depth of the each circuit and number of
entangling layers (dark grey) scales to accommodate all
67 features of the input data, so that the expressive
power of the circuit doesn’t change significantly across
di↵erent numbers of qubits. c. The test accuracy for
hardware QKM is competitive with the noiseless
simulations even in the case of relatively low circuit
fidelity, across multiple choices of qubit counts. The
presence of hardware noise significantly reduces the
ability of the model to overfit the data. Error bars on
simulated data represent standard deviation of accuracy
for an ensemble of SVM classifiers trained on 10 size-m
downsampled kernel matrices and tested on size-v
downsampled test sets (no replacement). Dataset
sampling errors are propagated to the hardware
outcomes but lack of larger hardware training/test sets
prevents appropriate characterization of of a similar
margin of error.

IV. CONCLUSION AND OUTLOOK

Whether and how quantum computing will contribute
to machine learning for real world classical datasets re-
mains to be seen. In this work, we have demonstrated
that quantum machine learning at an intermediate scale
(10 to 17 qubits) can work on “natural” datasets using
Google’s superconducting quantum computer. In par-
ticular, we presented a novel circuit ansatz capable of
processing high-dimensional data from a real-world sci-
entific experiment without dimensionality reduction or
significant pre-processing on input data, and without the
requirement that the number of qubits matches the data
dimensionality. We demonstrated classification results
that were competitive with noiseless simulation despite
hardware noise and lack of quantum error correction.
While the circuits we implemented are not candidates for
demonstrating quantum advantage, these findings sug-
gest quantum kernel methods may be capable of achiev-
ing high classification accuracy on near-term devices.
Careful attention must be paid to the impact of shot

statistics and kernel element magnitudes when evaluat-
ing the performance of quantum kernel methods. This
work highlights the need for further theoretical investiga-
tion under these constraints, as well as motivates further
studies in the properties of noisy kernels.
The main open problem is to identify a “natural” data

set that could lead to beyond-classical performance for
quantum machine learning. We believe that this can be
achieved on datasets that demonstrate correlations that
are inherently di�cult to represent or store on a classi-
cal computer, hence inherently di�cult or ine�cient to
learn/infer on a classical computer. This could include
quantum data from simulations of quantum many-body
systems near a critical point or solving linear and nonlin-
ear systems of equations on a quantum computer [18, 19].
The quantum data could be also generated from quan-
tum sensing and quantum communication applications.
The software library TensorFlow Quantum (TFQ) [20]
was recently developed to facilitate the exploration of
various combinations of data, models, and algorithms for
quantum machine learning. Very recently, a quantum ad-
vantage has been proposed for some engineered dataset
and numerically validated on up to 30 qubits in TFQ us-
ing similar quantum kernel methods as described in this
experimental demonstration [4]. These developments in
quantum machine learning alongside the experimental re-
sults of this work suggest the exciting possibility for real-
izing quantum advantage with quantummachine learning
on near term processors.
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E. Peters led the programming and data analysis ef-
forts, and wrote most of the initial draft. J. Caldeira
processed the dataset and contributed to classical ma-
chine learning benchmarks. A. Ho, S. Leichenauer, M.

See also: https://arxiv.org/abs/2105.03406 for the new “qubit record” in a kernels algorithm plus 
some good ideas about what sort of dataset might be amenable to a quantum advantage.

https://arxiv.org/abs/2105.03406
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Moving towards QQ QML…
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Figures courtesy of Quntao Zhuang (U. of Arizona)

Special thanks to Q. Zhuang (U. of Arizona) for slide inspiration.
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Supervised learning assisted by an entangled sensor 
network (SLAEN)
• See https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.041023 for theory.

27 Special thanks to Q. Zhuang (U. of Arizona) for slide content and figures.

Experiment demonstration
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Phys. Rev. X 11, 021047(2021)
Featured in Physics 14, 79 (2021)• Three sensors.

• Entanglement reconfigurable by beamspliders.
• Measurement noise suppressed by the entangled distributed squeezed light

Experiment led by Zheshen Zhang

Experiment demonstration
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https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.041023


2021/8/4 — Gabriel Perdue // @Fermilab 2021 Summer Student School at LNF

Conclusions
• Quantum computing is a powerful alternative to von Neumann architectures.
• It is specialized though - it has algorithm specific advantages and is limited by 

severe engineering challenges.
• Machine learning may prove to be a very interesting application space for 

quantum computing.
- Quantum algorithms run on classical data are not very promising in the near term, although 

everyone is trying to do this (and this is the bulk of the literature, discussion). 
- Classical machine learning to help operate a quantum computer however, is extremely 

promising!
- Even more interesting is quantum ML algorithms run on quantum data (output from another 

computer, or a network of sensors). 
• Young minds must bring creative ideas, especially for utilizing quantum sensors!
- Also promising: quantum generative networks.

28
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Thanks for listening!


