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The Standard Model of Elementary Particles

* Theory about fundamental ingredients of
matter and how they interact with each
other

* Everything known in this world is made of
these (and the mirror images)

Leptons

* |s the standard model complete?
 Neutrino in the Standard Model has no mass
* However neutrino mass has been observed, and it is much smaller than all other

particles
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Neutrinos have mass
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* Why is there such large gap between
neutrino masses and quark masses!?

* Why do quarks and leptons exhibit
different behavior?

* What is the absolute mass of neutrino?
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What is the symmetry between matter and antimatter?

* Physics theorize that the big bang created equal amounts of matter and antimatter
* When corresponding particles of

matter and antimatter meet, they . " o
annihilate one another e TSN
& . .

»
5 4

antimatter " matter
- —

But somehow we are still here and antimatter, for most part, has vanished

How is that we exist!
* Neutrinos could help to explain why the universe has more matter than antimatter!
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Neutrinos Oscillate!
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* There is a non-zero probability of detecting a different neutrino flavor than that
produced at the source

2
P(v,—>Vv,)= sin*(26) sin{1 27 A, L]

Vv

* The physics parameters are: the mixing angle and one mass squared difference
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Field moves quickly

* Around 2003 neutrino physicists searched T S
for the parameter sin203
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Remaining Questions

* Is there CP violation in the lepton sector?

- May explain matter-antimatter asymmetry

* What is the mass hierarchy? (sign of Am2,)

- Important to be able to understand the reach of experiments that study whether
neutrinos are their own antiparticle or not

* |s 6,3 maximal?
* |s there a fourth “sterile neutrino’?
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In More Detail

* Oscillation probability depends on neutrino energy Ey
* We need to reconstruct the neutrino energy precisely

Am?L
b,

)

P(vg — vg) = 1 — sin® 26 sin®(

* Neutrino energy reconstruction is obtained using the final state particles of
neutrino-nucleus interaction

* Fully active experiments reconstruct the energy using: Ev=Eieptonthadron

v W

w:l;

E

X had

N
* Nuclear effects modify the kinematics ot the particles and the reconstruction of

the neutrino energy
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In More Detail

Electron neutrino Muon neutrino

* Neutrino energy reconstruction is obtained using the final state particles of
neutrino-nucleus interaction

* Fully active experiments reconstruct the energy using: Ev=Eieptonthadron
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Charged Current Interactions

Quasi-elastic

— G. Zeller
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Also, we have Neutral current interactions
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Example of Nuclear Effects (Final State Interaction)

* Final state interaction (FSI):
- Due to final state interactions, particles can interact with nucleons and pions can
be absorbed before exiting the nucleus and other nucleons get knocked out

70 absorbed by
v the nucleus _ @ M
//\J

Neutron Only proton and muon escape

Protor‘1 —_—
Start as a RES interaction, the pion is absorbed and the interaction looks QE like
in our detector

* Nuclear effects modify the true/reco neutrino energy relationship and final-state
particle kinematics

* Pion absorption is twice as big in Argon as it is in Carbon!
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Example of Nuclear Effects (Final State Interactions)

* Other examples of final state interactions:

Elastic
Scattering

Pion Production
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How to make a neutrino beam

* Protons hit carbon
* Charged pions are produced
* Pions and kaons decay to neutrinos

Carbon rod

Fermilab: home of the most powerful neutrino beams,

Two neutrino beams:NuMI and Booster
2= Fermilab
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Neutrinos From Accelerators

* A beam of protons interact with a target and produce pions and kaons

Absorber Muon Monitors
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* Focusing system (2 horns, with current, emitting B field)

* Decay region (large pipe, filled with helium)

* Monitors and absorbers

* Neutrino beam produces mainly vy and small component of Ve
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Neutrino Energy Spectrum

* The target and second magnetic horn can be moved relative to the first horn to
produce different energy spectra

* This allows a study of neutrino interaction physics across a broad neutrino energy
range

* Neutrino oscillation experiments use interactions in the near and far detectors to
study oscillation physics
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Off axis NuMIl beam at ICARUS

e |CARUS is located 103mrad off axis from the NuMI| beam
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* High statistics for muon and electron neutrinos at ICARUS from NuMI beam
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Neutrino Interactions from NuMI off axis

* Vertex in LArTPC, making a cut on fiducial x,y and z coordinates in the active TPC

* Predicted events per year (6e20POT):
e CC muon neutrino=433056, NC muon neutrino=191232
e CC electron neutrino=20608, NC electron neutrino=7312
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Neutrino Interactions from NuMI off axis

* Mainly channels are quasi-elastic and resonance interactions

* We could make cross section measurements for quasi-elastic and pion production
scattering, for both electron and muon neutrinos
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Neutrino Cross Section at ICARUS

e Ratio of electron neutrino to muon cross section has been measured on carbon

* Measurement of Electron to muon neutrino Quasielastic Scattering at MINERVA
experiment
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* There are no high statistic measurements of the electron neutrino cross-section and
muon to electron neutrino ratio cross section on argon at DUNE high energies

 This is an example of the measurements we could do
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Measurements with Quasi-Elastics Events -

Probing final state nuclear effects using the leading proton
and the lepton

Differential cross section in initial struck neutron
momentum

- Useful to constrain initial nuclear effects, deficiencies in the model
at low and mid region of the neutron momentum

103 Using ICARUS simulation for electron neutrinos
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Neutrino Cross Section

* A measure of the probability of an interaction occurring

Volume of the
detector V Number of interactions

Neutrino per second

flux ¢

Cross section o Density of targets n

2 \/ Number of interactions that occurred

Cross Section O' S
Total flux of incident neutrinos per unit area / ®T

\ Number of targets

For a neutrino that has 1 GeV O'(VN) ~ 10—386m2 — tiny
of energy the cross section

compare with J(pp) ~ 10_26cm2
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Detector Cosmic Ray Tagger (CRT)
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Building a Cross Section

 All cross section analyses need to use reconstructed tracks or showers
* We need calibration of the charge and energy response in the TPCs

e Calorimetry and particle ID

* We need reconstruction from the PMT and CRT systems to reject the cosmic
background
* TPC-PMT matching and CRT-PMT matching

* Measurements will be done as function of neutrino energy, four momentum transfer,
muon/electron momentum and angle
* Need to reconstruct muon momentum and angle, neutrino energy, four momentum

¢ EV=E|epton+had ron Q2 = —mi + 2EQE(E“ — Py COS 9,u)

2 Fermilab

23 Minerba Betancourt



Electron Neutrino Event Selection

* Working with the electron neutrino event selection using the simulation

* |nitial studies used the following cuts:

* Longest track length
* Shower start position

* One shower with energy greater than 250 MeV and initial dE/dx cut

* Recently there has been a lot development with the SBN event selection and we
have started to look other variables and cuts using the analysis framework from
SBN and starting to look into optimization
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More details at SBN-docs
21651 and 21426
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Electron Neutrino Event Selection

* |nitial work explored comics background rejection

* Preliminary studies using containment cuts on tracks/showers
(-180, -885)cm < Shower (y, z) < (130, 870)cm
(-175,-885)cm < Track (v, z) < (130, 880)cm

* PMT flash matching using the PMT information
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Electron Neutrino Event Selection

* Initial work explored comics background rejection
* Preliminary studies using containment cuts on tracks/showers
(-180, -885)cm < Shower (y, z) < (130, 870)cm
(-175,-885)cm < Track (y, z) < (130, 880)cm
* PMT flash matching using the PMT information
* CRT cuts using hits from CRT

Containment 2683 52.71 % 12.35 %

CRT hits 1690 70.21 % 1081 0.37 %

* More information from CRT could be used to reduce further the cosmic

background _
3¢ Fermilab
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Muon Neutrino Event Selection

* Starting the analysis with MC simulations
* Using different cuts to reject the cosmic background

* Energy spectrum before and after the cuts
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Summary

* Neutrinos are great probes to answer fundamental questions about the nature of
matter and the evolution of the universe

* Several discoveries since the first experimental evidence of neutrinos

* Oscillation experiments depend on modeling nuclear effects correctly and
knowledge of cross sections to a few percent for precision oscillation
measurements

* Rich physics program of neutrino-argon scattering measurements at ICARUS
* We have been commissioning the ICARUS detector at FNAL
* Working with the event selection in MC simulations and data

* Exciting times, we will be working to produce electron and muon neutrino cross
sections

* [CARUS data taking for physics expected in fall
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