PLASMONX

Danilo Giulietti INFN, Pisa, Italy

SELF-INJECTION TEST EXPERIMENT (SITE)

GeV ELECTRON ACCELERATION

Main set up parameters

$L_{gas jet} [\rm mm]$	$n_e \; [{ m e/cm^3}]$	τ [fs]	$I_0 \; \mathrm{[W/cm^2]}$	$w_0 \; [\mu { m m}]$
4	$3\cdot 10^{18}$	30	$5.2\cdot 10^{19}$	16

INFN

NUMERICAL SIMULATIONS

• Nonlinear 3D regime (bubble) ^a

^aS. Gordienko and A. Pukhov, Phys. Plas. 12 (2005) / W. Lu et al. PRSTAB 10 (2007)

PSC RUNS FOR S.I.T.E.

Need to run for longer axial and transverse length

SCHEMATIC EXPERIMENTAL SET UP

FLAME TARGET AREA (FOR S.I.T.E.)

FLAME TARGET AREA

FLAME TARGET AREA

FLAME TARGET AREA (SITE)

VERT. AND HORIZ. SHIELDING

MAIN BEAM OPTICS IN PLACE 45 AND 15° TURNING MIRROR MOUNTED

FOCUSING LASER

1 m focal length, 15° Off Axis Parabola (SORL)

INFN

LASER AT TARGET CHAMBER CENTER Pointing stability at TCC

	Centroid Y	Centroid X
Minimum	160,89799	172,12
Maximum	166,22099	179,614
Points	39	39
Mean	162,9351	175,0372
Median	162,995	175,244
RMS	162,93927	175,04455
Std Deviation	1,18026	1,6241748
Variance	1,3930138	2,6379437
Std Error	0,18899286	0,26007611

GAS JET TARGET IN PLACE

AGENDA FOR NEXT WEEKS

• Full power FLAME test: transport, compression, OAP focusing (no target);

- Laser performance test at output: far field, contrast, width, phase distortion, measurements ... prepare for adaptive optics;
- Completion and and test of HW and SW control and diagnostics;
- Completion of hardware and registration for radioprotection, safety and control of operations;
- Laser on (gas-jet) target at >50 TW level.

PLANNED ACTIVITY 2/2

ATTIVITÀ COMMISSIONING FLAME E PLASMONX 2010-2011	LUG	AGO	SET	отт	NOV	DIC	1° TRI (11	2° TRI :11	3° TRI (11	4° TRI (11
Acceleration with self-injection (SITE) - Laser Beam and Plasma Diagnstics										
Acceleration with self-injection (SITE) - Bunch production and characterisation										
with 1.2 mm gas-jet										
Acceleration with self-injection (SITE) - Bunch production and characterisation										
with 4.0 mm gas-jet,										
Acceleration with self-injection (SITE) - Bunch stability and control vs laser										
stability										
Commissioning FLAME: Assessment and validation of laser performance at										
interaction focus point										
Thomson Scattering: Installation of additional e-beam line and delivery of										
laser beamline										
FAST: Installation of laser-linac sync										
Thomson Scattering: integration of target chambre components and X-ray										
source optimisation										
Thomson Scattering: X-ray beam to users (BEATS)										
FLAME target area Maintenance + set up and preliminary tests for solid target										
experiments										
Ion acceleration (LILIA) at FLAME target area										

SUMMARY

- FLAME commissioning entering experiment phase;
- Requirements on peak power, contrast, stability are challenging;
- Measurements to date show that parameters are within specs;
- Radiation protection measures in place awaiting authorization
- Rapidly approaching self-injection LPA measurements

"TEST" EXPERIMENT DIAGNOSTICS

OPTICAL DIAGNOSTICS FOR LASER PROPAGATION STUDIES

Thomson scattering

Femtosecond optical probing

Transmitted and scattered beam spectroscopy

ELECTRON DIAGNOSTICS FOR ELECTRON ACCELERATION MEAS.

Establish self-injection acceleration conditions

Provide benchmarking for modelling

Agenda for next 6-8 months

- Completion and commissioning of subsystems:
 - •Clean room, Cooling network, Ethernet (before end of July '09)
- Full laser installation (Sept. 15th December 2009, in phases;)
- Assembling of transport line from optical compressor to experimental target chamber (July September '09)
- Assembling of self injection test experiment diagnostics (September – December '09)
- Laser on (gas-jet) target at >50 TW lavel Feb-March 2010.

Conclusions

- Installation of main subsystems in progress Clean room, Laser, Cooling, Conditioning;
- Components of beam transport line in production;
- Design of test experiment completed;
- Construction of electron spectrometer in progress;
- ullet

Attività PLASMONX a Pisa

L'attività Pisana continuerà a svolgersi presso il laboratorio ILIL-INO-CNR dove è operante un sistema laser Ti:Sapphire da 3TW.

Essa consisterà nella messa a punto di nuove diagnostiche per la caratterizzazione degli elettroni accelerati mediante LPA e del plasma in cui l'accelerazione si sviluppa.

L'Unità PLASMONX-Pisa continuerà a svolgere un cruciale ruolo nella formazione di giovani ricercatori nel campo dell'interazione laser-plasma ad alte intensità finalizzata allo sviluppo di Nuove Tecniche di Accelerazione

ELECTRON ACCELERATION EXPERIMENT

Gas-Jet nozzle

A TOP VIEW OF THE INTERACTION as seen in the optical domain

Thomson scattering from plasma electrons In the high intensity region

 Plasma self-emission from gas ionisation

Gas-jet nozzle slit

Scattered laser light

ACCELERATION LENGHT

Thomson scattering clearly shows the region of propagation of the laser pulse, with evidence of self-guiding over a length approximately three times the depth of focus (+/- 50μ m).

Corresponding interferometry map

ELECTRON BEAM He@50 bar

The LANEX screen shows a collimated electron beam.

Electron spectrum

INFN

LASER BEAM EVOLUTION IN MEASURED DENSITY PROFILE

Aladyn numerical simulations (di C. Benedetti et al.,)

Strong self-focusing occurs on a longitudinal scalelength of approx. 50 µm leding to a 10-fold increase of the local intensity

ACCELERATION REGIME

 Numerical modelling shows that, in spite of the relatively low laser intensity, a single acceleration cavity develops;
 This behaviour resembles the so-called bubble-regime originally proposed by A.
 Pukhov & J.Meyer-ter-Vehn, (Appl. Phys. B, 74, p.355 (2002));

Bubble regime differs from traditional wake field acceleration in that one drives the plasma far beyond the wavebreaking limit, such that a single wake, rather than a regular plasma wave train is formed (M. Geissler et al., New J. Phys. 8 (2006) 186);

ANAGRAFICA

Ricercatori

Nome CF	Contratto	Qualifica	A	Aff.	%
1 Cecchetti Carlo Alberto CCC	CLL76H03G702A Ass	ociato Tecnologo	C	CSN V	50
2 Ciricosta Orlando CRCRND8	34C16I441C Asso	ociato Laureato	(CSN V	50
3 Giulietti Danilo GLTDNL49E	14F513H Inc	arico di ricerca Professore	(CSN V	80
4 Giulietti Antonio GLTNTN44	H25G148Y Asso	ociato Dirigente di Ricerca	n (CSN V	20
5 Gizzi Leonida Antonio GZZL	DN65A24L086F Asso	ociato Primo Ricercatore	C	CSN V	50
6 Koester Petra KSTPRM70D5	4Z112I Ass	sociato Assegnista	C	CSN V	30
7 Labate Luca Umberto LBTL	MB71T30H224E Ass	sociato Ricercatore	C	CSN V	50
8 Pathak Naveen PTHNNC80L	15Z222S Asso	ciato Dottorando	C	CSN V	80
9 Vaselli Moreno VSLMRN39S2	20G702U Assoc	iato Dirigente di Ricerca	C	CSN V	20

Numero Totale Ricercatori 9 FTE : 4.3

Canitala	Descriptions	Par	ziali	Totale		
Capitolo	Descrizione	Richiesta	SJ	Richieste	SJ	
INTERNO	 missioni a LNF; coordinamento con le altre Unità del Progetto; congressi e meetings nazionali 	35.00		35.00	0.00	
ESTERO	 missioni a : AMPLITUDE TECHNOLOGIES (Evry); Ecole Polytechnique; CEA Saclay; RAL; PALS.Congressi e meetings internazionali. Attività nei progetti Europei. 	15.00		15.00	0.00	
CONSUMO	 ugelli per gas-jet gas per gas-jet fogli di radiocromico fogli metallici di vari spessori per filtraggio raggi X capillari per gas-target filtri ottici filtri ottici interferenziali 	5.00 2.00 3.00 3.00 10.00 1.00 3.00		27.00	0.00	
SEMINARI						
TRASPORTI						
PUBBLICAZIONI						
MANUTENZIONE	 manutenzione pompe da vuoto componentistica ottica per manutenzione laser 3TW CNR-INFN flashlamps per manutenzione laser 3TW CNR-INFN diodi di pompa per manutenzione laser 3TW CNR-INFN cartucce per filtri di depurazione acqua circuito di raffreddamento laser 3TW CNR-INFN 	5.00 3.00 10.00 15.00 2.00		35.00	0.00	
INVENTARIO	1. elettronica di sincronizzazione laser Nd e Ti:Sa 2. CCD X retro-illuminata	5.00 45.00		50.00	0.00	
APPARATI	1. mazzler 2. dazzler	45.00 45.00		90.00	0.00	

Totale 252 KEURO

RICHIESTE IN SEZIONE

OFFICINA MECCANICA ELETTRONICO

2 mese-uomo

1 mese-uomo

