Status of the R.A. budget for the plan C (prepared with NeuCBOT and SaG4n)

Maxim Gromov (SINP MSU, JINR), Vicente Pesudo (CIEMAT)

DS-mat working group meeting 28.05.2021

General overview

---- NR after cuts in 200 t y

SaG4n with JENDL-TENDL2017:

0.095 NR after cuts in 200 t y **Reduction by ---% with respect to the R.A. budget** based on NeuCBOT+TENDL2019 (TALYS-1.95)

To be updated soon: - numbers of PDMs and TIAs

Most contributing materials for the Plan C

	NeuCBOT +		SaG4n +	
	TENDL2019 (TALYS-1.95)		JENDL-TENDL2017	
1		%	Acrylic Donchamp	16.56%
2		%	Gd2O3 Shin-etsu on Acrylic	14.27%
3		%	RPUF EA	12.83%
4		%	Rigid EA	9.34%
5		%	resistor	8.84%
6		%	Finished Arlon 55NT PCB	4.81%
7		%	SS grid frame	4.48%
8		%	flexible EA	3.30%
9		%	Gd2O3 Shin-etsu	3.19%
10		%	Acrylic Donchamp from JUNO	2.65%
11		%	LED (op. driver)	2.39%
12	REST	%	REST	17.34%

Quite similar sets of the most contributing materials

	same position
Legend:	in both lists
•	only in one list

Outcomes

1) The total budget with NeuCBOT and TALYS-1.6 is 0.160 NR after cuts in 200 t y for the plan C

The total budget with SaG4n and JENDL-TENDL2017 is 0.095 NR after cuts in 200 t y for the plan C The respective reduction is about ---%

2) Quite similar sets of the most contributing materials

3) The comparison between the budgets which are based on NeuCBOT with the TENDL2019 library (TALYS-1.95) and SaG4n with the JENDL-TENDL2017 library will be done soon

Outcomes

4) Automatic recalculation in all the budgets when changing the masses of materials, activities and inefficiencies

5) A link to the new neutron budgets

with NeuCBOT and TENDL2015 (TALYS-1.6): neutron_bg_Apr21_PlanC <------ As of now, this is the only place where the masses, activities and inefficiencies can be changed

with NeuCBOT and TENDL2019 (TALYS-1.95): _______neutron bg Apr21 PlanC with NeuCBOT+TALYS-1.95 28-05-2021

with SaG4n and TENDL2017: neutron_bg_Apr21_PlanC_with_SaG4n_copy_28-05-2021

Backup slides

Tools

NeuCBOT

with the **TENDL2019** library of the (α,n) cross sections (based on with TALYS-1.95) Author: Shawn Westerdale Links: <u>article</u>, <u>code</u>

Features:

- Fast calculations (but without propagation of particles in the specified medium)

- relies only on theoretical calculations performed with the TALYS code

SaG4n 1.1

with the JENDL-TENDL2017 library of the (α,n) cross sections and the secondary neutron energy-angular distribution data Authors: the CIEMAT group, namely Emilio Mendoza, Daniel Cano-Ott, Vicente Pesudo, Roberto Santorelli Links: article, code

Features:

- based on Geant4 (propagation of particles in the specified medium)

- relies on available experimental data and theoretical calculations