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Muon-induced backgrounds

Two dangerous types of background

80 cm

3.5m

3.5 m

Pure acrylic
Gd-Acrylic

Material activation
* Muon passing through detector
components creates unstable isotopes
with pus—hrs half-life
* Particular danger from -delayed
neutrons produced near TPC

Prompt neutrons
* Produce by spallation, shower, etc.
induced by muon while it traverses rock,
lab, and detector
* High energy, may penetrate shielding

* Muon doesn’t need to come near the
detector for a neutron to reach TPC
* Neutrons may even emerge from rock
with the muon



Some facts about prompt neutrons

High energy neutrons -> high penetration! Fish can’t live in a LAr tank, so we can’t expect Poisson stats
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Some facts about prompt neutrons

Significant neutron production displaced from muon track Neutrons can stray even farther from the muon track
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To catch a lot of muons, you need a big net
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Muon missed - background! Muon caught - background vetoed :)
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* 30.6 years of muons + showers simulated in Hall C by Toni Empl

* Hall C muons propagated into Plan C geometry by Sagar, further development underway by Teena

* Disclaimers:

— FLUKA output is cumbersome and complicated; currently existing FLUKA simulations are limited in what
variables are stored for each event

— Existing FLUKA output records

* Total energy deposited in TPC, neutron veto, and LAr bath
* ID of all particles entering the TPC

* Kinetic energy of all neutrons that entered the TPC

— Cannot apply fiducial and multiple scatter cuts with this - maybe they would improve things by a factor of ~a
few

e Some very rough approximations can be explored by cutting on what/how many particles enter TPC

— Timescale for additional MC with higher stats and more variables stored > 1 month
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There are likely some minor differences in geometry (e.g. Cu vs. Ti barriers), but covers main elements



Plan C FLUKA simulations, 30.6 yrs: No | veto
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No nveto, 1 visible TPC neutron

NVeto thresh 500 keV, 1 visible TPC neut
NVeto thresh 500 keV, precisely 1 TPC neut
NVeto thresh 100 keV, 1 visible TPC neut
NVeto thresh 0 keV, 1 visible TPC neut
NVeto thresh 0 keV, precisely 1 TPC neut

38  Allscenarios require that no non-neutrons enter TPC

“1 visible neut” > neutrons below 1 keV don’t cause
9 multiple scatters 8
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Plan C FLUKA simulations, 30.6 yrs: Adding U veto

No p veto

No NVeto,

NVeto
NVeto
NVeto
NVeto
NVeto

thresh
thresh
thresh
thresh
thresh

1 visible TPC neutron

500 kev, 1 visible TPC neut

500 keV, precisely 1 TPC neut:

100 kev, 1 visible TPC neut
0 keV, 1 visible TPC neut
0 keV, precisely 1 TPC neut

M veto threshold 1 GeV

No NVeto,

NVeto
NVeto
NVeto
NVeto
NVeto

thresh
thresh
thresh
thresh
thresh

1 visible TPC neutron

500 keV, 1 visible TPC neut
500 keV, precisely
100 keV, 1 visible TPC neut
0 keV, 1 visible TPC neut

0 keV, precisely 1 TPC neut

i veto threshold 100 MeV

No NVeto,

NVeto
NVeto
NVeto
NVeto
NVeto

thresh
thresh
thresh
thresh
thresh

1 visible TPC neutron

500 kev, 1 visible TPC neut

500 keV, precisely 1 TPC neut:

100 keV, 1 visible TPC neut
0 keV, 1 visible TPC neut
0 keV, precisely 1 TPC neut

i veto threshold 50 MeV

No NVeto,

NVeto
NVeto
NVeto
NVeto
NVeto

thresh
thresh
thresh
thresh
thresh

1 visible TPC neutron

500 keVv, 1 visible TPC neut
500 keV, precisely
100 kev, 1 visible TPC neut
0 keV, 1 visible TPC neut

0 keV, precisely 1 TPC neut

This is ~ the nominal design,
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modulo fiducial+multiscatter cuts

Note: DS-50 saw 2 cosmo neutrons (vetoed)
DS-20k has a cross sectional area 136x larger

Neglecting vetoes, a simple scaling of
background rate would predict 272 events
> these simulations predict 234!

One event that’s hard to kill...

* Edep TPC =158 keV
/ * Edep NVeto =459 keV

* Edep LAr Bath =616 keV

. =1, at 3.3 MeV 9

neutrons
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* Zoe has been running g4ds simulations of Plan C geometry with PMTs added
— Studying PE detected vs. energy deposited by muons for different configurations
* Onerealistic scenario: Reuse MiniCLEAN PMTs

— Of course, not the only option (maybe we want PDMs?), but it is ~free and sets a realistically achievable
baseline for argument’s sake

— 92 PMTs (80 are working perfect, they think remaining 12 are just a problem with the base and can be revived)

— For these simulations, Zoe is using the DS-50 LSV PMTs (R5912, 8” diameter), spaced ~uniformly around the
cryostat walls

* Disclaimers:

— Muon simulations are not currently producing anything heavier than electrons. Debugging from Igor indicates
that this may be fixed by upgrading to latest Geant4-10 version

— Muon veto background model from 3%Ar and y’s are still being set. Realistically, this will set the achievable
threshold
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Optical muon veto simulations

Three configurations considered

* 92 PMTs, no reflector, no TPB

* 92 PMTs, Tyvek reflector, no TPB

* 92 PMTs, Tyvek reflector, TPB on PMT faces

Scintillation+Cherenkov modes

Ar pileup +y backgrounds, but significantly
enhanced p signal

No scintillation: Cherenkov only modes
Negligible *°Ar background, mostly y’s

Phototube coverage ~0.5%



Cherenkov-only modes
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(Note the different x axes)



Seintlation FLakenko rmode
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From scaling arguments we naively expect to find a LY ~ 40-400 pe/MeV
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Head time

Full simulations are being developed. For now, the following are some preliminary considerations
* 39Ar: 700 tonnes > 700 kBq!

— Negligible contribution to Chernekov (expect something like 10 PE/3°Ar decay at endpoint)

- If we need a 5 (10) us coincidence window to detect scintillation light, then we expect an average of 3.5 (7)
39Ar decays to pile up

* With a mean 3 energy of 219 keV, 39Ar pileup will produce a wall below ~800 (1600) keV for Scintillation configuration
* y-rays from cryostat (from Vicente’s spreadsheet): Average 1.9 MeV at 77 kBq

*1“Bj: 1.8 MeV J

28T|: 2.6 MeV 1.2 MeV +1.3 MeV 0
s (10% BR)

(36% BR) (100% BR)
— Assume half of these y’s scatter in LAr, then we have 38.5 kBq background of 1.9 MeV

— This gives a 20 (40)% pile-up rate below 2 MeV, assuming 100% of y energy lost in LAr

* y-rays from rock/lab surroundings: Need reference 14



Dead time: 3%Ar toy MC and lab y’s

10 us window
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* More FLUKA statistics are needed to pin down final background expectation, along with better
models of multiple scatter and fiducial cuts

* However, from the available simulations, the (unrealistically) best case scenario leaves us with
two cosmogenic neutron backgrounds in 10 years - we need a muon veto

* It looks like achieving an expectation << 1 will require a muon veto threshold as low as ~50
MeV and decreasing neutron veto threshold below 500 keV (a 100 keV threshold works)

* Optical simulations of the muon veto are still under development, but it looks like these goals
are imminently achievable with modest instrumentation

— A2 MeV threshold on muon tagging seems achievable given backgrounds

* Bonus note: Potentially some interesting neutrino physics through the neutrino absorption
channel (ER signal at E,-1.5 MeV with a taggable delayed coincidence and a o) with 700 tonnes

of instrumented LAr...
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At 1600 MeV, we get 115e6 PE. LY ~ 71.8 PE/keV
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