

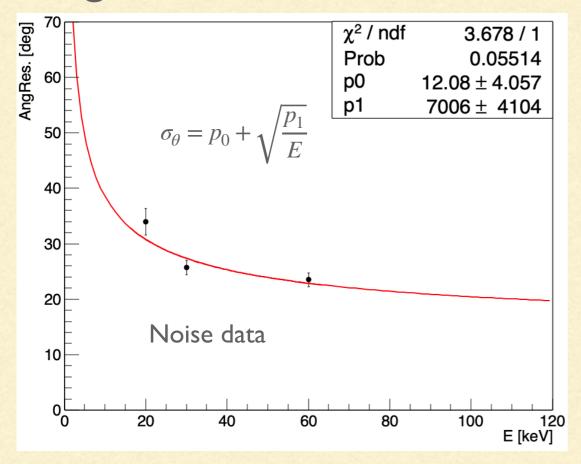
Update on low-energy electron reconstruction in CYGNUS

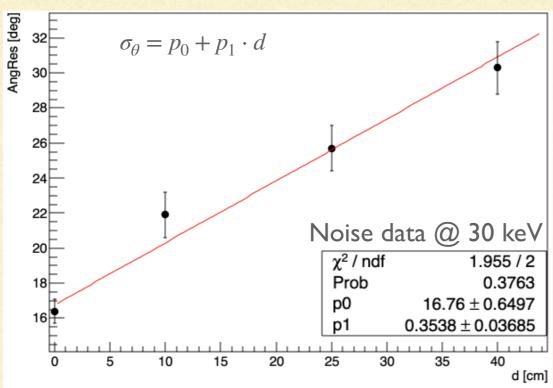
S.Torelli - E.Baracchini

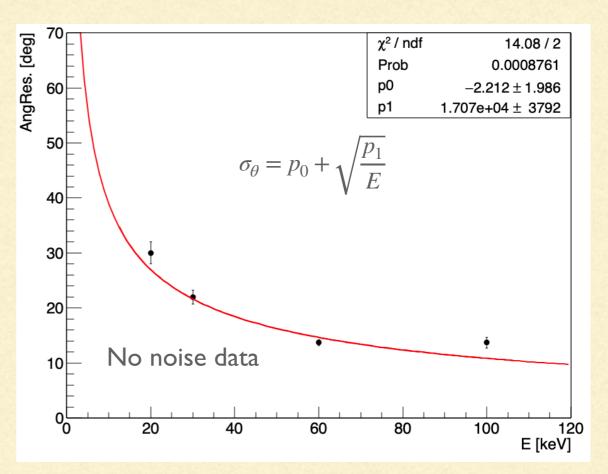
The 3944 and 3797 pedestals

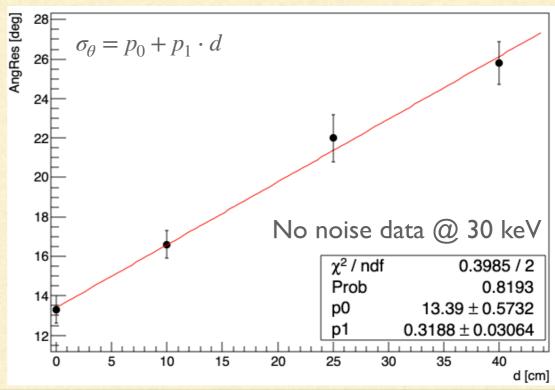
Redigitization and reconstruction of all dataset used for this study with new pedestal

Parameters used for the digitization

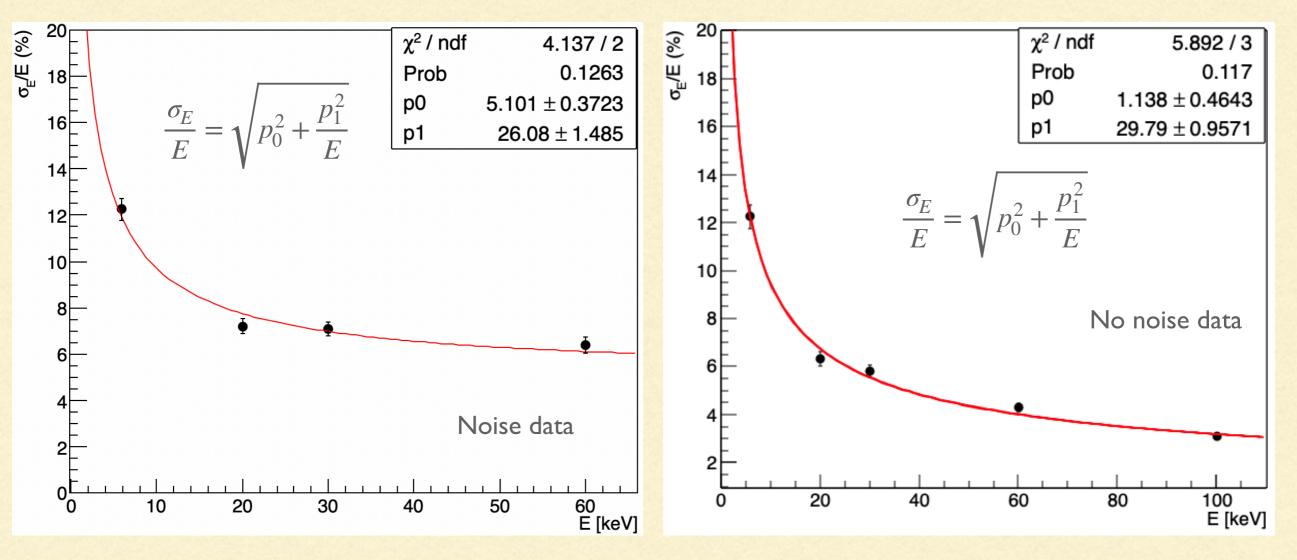

```
'diff_coeff_B'
                                        #diffusion parameter [mm/sqrt(cm)]^2
                        : 0.0196,
'diff_const_sigma0'
                                        # diffusion constant [mm]^2
                        : 0.0784,
'z_dim'
                        : 350,
                                         #first dimension of the detector
'y_dim'
                                         #second dimension of the detector
                        : 350,
'z_pix'
                                        #number of pixels in the first dimension
                        : 2304,
'y_pix'
                        : 2304,
                                        #number of pixels in the second dimension
                                        #coordinate of the cam in the simulation (x the is drift direction in geant4 sim) [mm]
x_gem'
                        : 510,
'tag'
                        : 'Data',
                        : 3944,
'noiserun'
'Conversion_Factor'
                        : 3000./6,
                                        #Number of photoelectrons emitted per keV (iron calibration) [LIME has 60% light wrt LEMON]
'ion_pot'
                        : 0.0462,
                                         #ionization potential for He/CF4 60/40 [keV]
'GEM_gain'
                                         #gain in a single GEM foil, value chosen to reproduce the measured light yield in LEMON
                        : 123,
'photons_per_el'
                        : 0.07,
                                         #number of photons per electron produced in the avalanche
                                         #sensor dimension [mm]
'sensor_size'
                        : 14.976,
                        : 0.95,
'camera_aperture'
                                         #if 'True' background is added
'bckg'
                        : True,
                                        #choose input type: True for G4 root iput, False for SRIM txt files
'rootfiles'
                        : True,
                                         #number of events to be processed, -1 = all
'events'
                        : 500,
                                            # Remove or not the file from the tmp folder
#'donotremove'
                         : True,
```


Angular resolution on new data


	Noise data		No noise data	
20 keV	$\sigma_{\theta} = 34.0 \pm 2.4^{\circ}$ H	T=82.2%	$\sigma_{\theta} = 30.0 \pm 2.0^{\circ}$	HT=88.8%
30 keV	$\sigma_{\theta} = 25.7 \pm 1.3^{\circ}$ H	T=86.2%	$\sigma_{\theta} = 22.0 \pm 1.26^{\circ}$	HT=89.0%
60 keV	$\sigma_{\theta} = 23.5 \pm 1.2^{\circ}$ H	T=81.0%	$\sigma_{\theta} = 13.7 \pm 0.5^{\circ}$	HT=91.1%
100 keV			$\sigma_{\theta} = 13.8 \pm 1.0^{\circ}$	HT=85.7%
0 <i>cm</i>	$\sigma_{\theta} = 16.4 \pm 0.7^{\circ}$ H	T=88.6%	$\sigma_{\theta} = 13.3 \pm 0.7^{\circ}$	HT=90.4%
10 cm	$\sigma_{\theta} = 21.9 \pm 1.3^{\circ}$ H	IT=86.8%	$\sigma_{\theta} = 16.6 \pm 0.7^{\circ}$	HT=88.8%
25 cm	$\sigma_{\theta} = 25.7 \pm 1.3^{\circ}$ H	HT=86.2%	$\sigma_{\theta} = 22.0 \pm 1.2^{\circ}$	HT=89.0%
40 cm	$\sigma_{\theta} = 30.3 \pm 1.5^{\circ} \vdash$	HT=86.4%	$\sigma_{\theta} = 25.8 \pm 1.1^{\circ}$	HT=88.4%


Worse due to: same pixel size, but larger sensor dimension \rightarrow Less granularity Scaling of the data consistent vs energy and vs drift distance - HT>80% in all cases

Angular resolution on new data

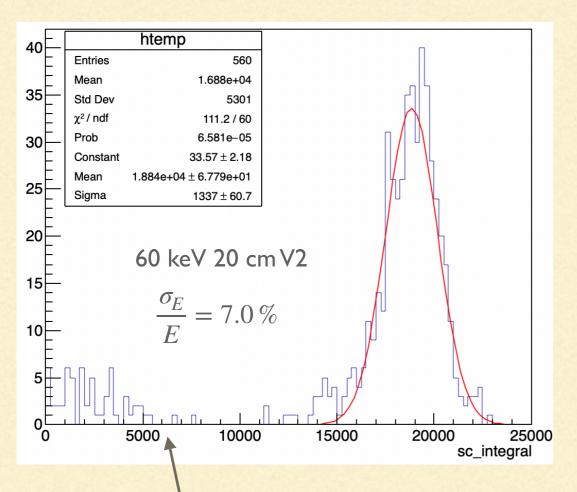


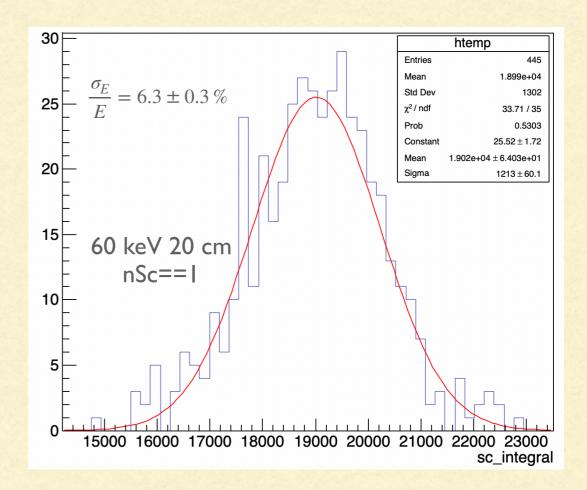
IP resolution on new data

	Data with noise	Data without noise
20 1, 1/	$\sigma_{x} = (0.548 \pm 0.022)mm$	$\sigma_x = (0.46 \pm 0.03) mm$
20 keV	$\sigma_y = (0.69 \pm 0.03) mm$	$\sigma_y = (0.797 \pm 0.025)mm$
20 koV	$\sigma_{x} = (0.99 \pm 0.04)mm$	$\sigma_{x} = (0.462 \pm 0.018) mm$
30 keV	$\sigma_{y} = (0.70 \pm 0.05)mm$	$\sigma_y = (0.68 \pm 0.03) mm$
60 L II	$\sigma_{x} = (1.56 \pm 0.08)mm$	$\sigma_{x} = (0.592 \pm 0.028) mm$
60 keV	$\sigma_{y} = (0.64 \pm 0.03)mm$	$\sigma_{\rm y} = (0.324 \pm 0.020) mm$
100 1 17		$\sigma_{x} = (0.67 \pm 0.03) mm$
100 keV		$\sigma_y = (0.360 \pm 0.025)mm$
	$\sigma_{x} = (0.451 \pm 0.020)mm$	$\sigma_{x} = (0.267 \pm 0.010)mm$
0 <i>cm</i>	$\sigma_y = (0.164 \pm 0.009)mm$	$\sigma_y = (0.093 \pm 0.006) mm$
10 000	$\sigma_{x} = (0.77 \pm 0.04)mm$	$\sigma_x = (0.421 \pm 0.018) mm$
10 cm	$\sigma_y = (0.47 \pm 0.03) mm$	$\sigma_y = (0.182 \pm 0.012)mm$
25 cm	$\sigma_{x} = (0.99 \pm 0.04)mm$	$\sigma_{x} = (0.462 \pm 0.018) mm$
25 CM	$\sigma_{y} = (0.70 \pm 0.05)mm$	$\sigma_y = (0.68 \pm 0.03) mm$
10 000	$\sigma_{x} = (0.82 \pm 0.04)mm$	$\sigma_{x} = (0.526 \pm 0.025)mm$
40 cm	$\sigma_y = (0.62 \pm 0.04) mm$	$\sigma_{y} = (0.704 \pm 0.024)mm$

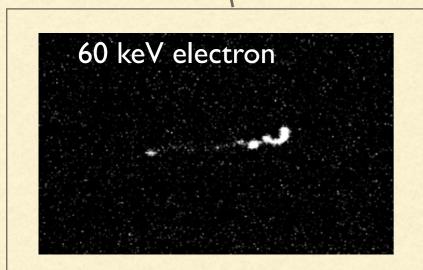
Slightly worse than before due to less granularity (still less than 1 mm)

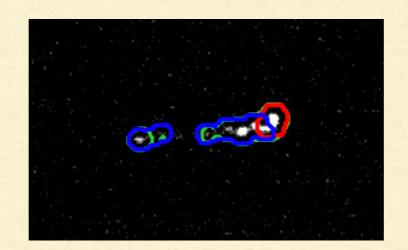
Energy resolution of simulated data

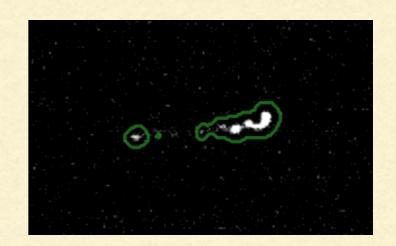



- Energy resolution behaviour vs E consistent with what we expect
- Flat at 30 keV as a function of the distance in data with and without noise

	Dist	Res	Err. Res
Noise	30 keV 0 cm	6,54	0,27
	30 keV 10 cm	6,26	0,30
	30 keV 25 cm	7,08	0,30
	30 keV 40 cm	6,79	0,29


	Dist	Res	Err. Res
No noise	30 keV 0 cm	6,24	0,33
	30 keV 10 cm	5,33	0,31
	30 keV 25 cm	5,79	0,26
	30 keV 40 cm	5,18	0,26


Not perfect track reconstruction



Some tracks not well reconstructed but a selection can be done

Conclusions

- Tracks has been successfully digitized and reconstructed
- Scaling of angular resolution as a function of the energy and the drift distance is consistent
- Impact point determination resolution below I mm
- The energy resolution scaling is consistent and compatible with energy resolution expected @ $6\ keV$