Characterization of LIME PMTs

Chiara Riggio

The PMT Hamamatsu R7378A:

	Parameter	Description	Unit
Spectral response		160 to 650	nm
Peak wavelength		420	nm
Photocathode	Material	Bialkali	_
Filolocalilode	Minimum effective area	φ22	mm
Window material		Synthetic silica	_
Dynode	Structure	Circular and linear-focused	<u> </u>
Dynode	Number of stages	10	_
Base		14 pin glass base	_
Suitable socket		E678-14C (supplied)	_
Operating ambient ter	nperature	-30 to +50	°C
Storage temperature		-80 to +50	°C

MAXIMUM RATINGS (Absolute maximum values)

in billion in third prisonate maximum values,								
	Parameter	Value	Unit					
Cupply voltage	Between anode and cathode	1250	V					
Supply voltage	Between anode and last dynode	250	V					
Average anode current		0.1	mA					

CHARACTERISTICS (at 25 °C)

	Parameter	Min.	Тур.	Max.	Unit	
	Luminous (2856 K)	60	90	_	μA/lm	
Cathode sensitivity	Radiant at 420 nm	_	85		mA/W	
	Blue sensitivity index (CS 5-58)	9	10.5	-	-	
Anode sensitivity	Luminous (2856 K)	50	50 180 —		A/lm	
Gain			2.0 × 10 ⁶		-	
Anode dark current (aft	ode dark current (after 30 min storage in darkness)		3	20	nA	
	Anode pulse rise time	_	1.5	_	ns	
Time response	Electron transit time		17	-	ns	
	Transit time spread (T.T.S.)		0.9	=	ns	
Pulse linearity at ±2 % deviation		_	30	_	mA	

NOTE: Anode characteristics are measured with the voltage distribution ratio shown below.

STANDARD VOLTAGE DIVIDER AND SUPPLY VOLTAGE

Electrodes	K	Dy1	Dy2	Dy3	Dy	y4 D	y5 [)y6	Dy7	Dy8	Dy9	Dy1	10	Р
Ratio		3	1	1	1	1	1	1	1	ř.	1	1	1	T

Supply voltage: 1000 V, K: Cathode, Dy: Dynode, P: Anode

The experimental setup:

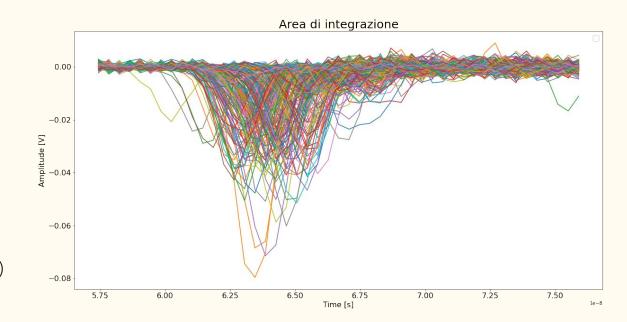
- PMTs are inserted in a cylindrical box with a central hole for the optical fiber;
- Oscilloscope Teledyne Lecroy WaveSurfer 4101 HD
- CAEN HV programmable power supply N470

The experimental setup:

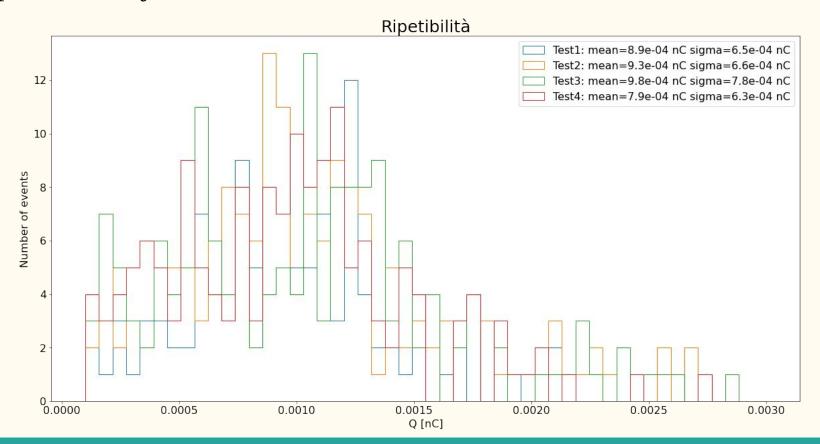
• LED driver CAEN SP5605:

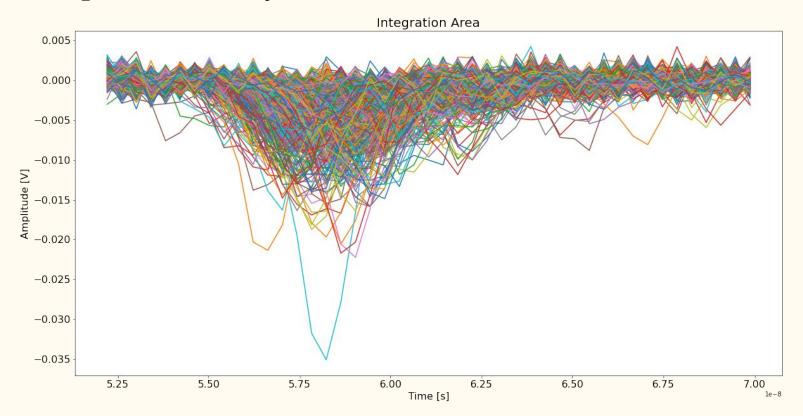
This LED driver was also used for the external trigger (lever on INT, trigger wire in OUT)

All the measurements were done at low frequency.

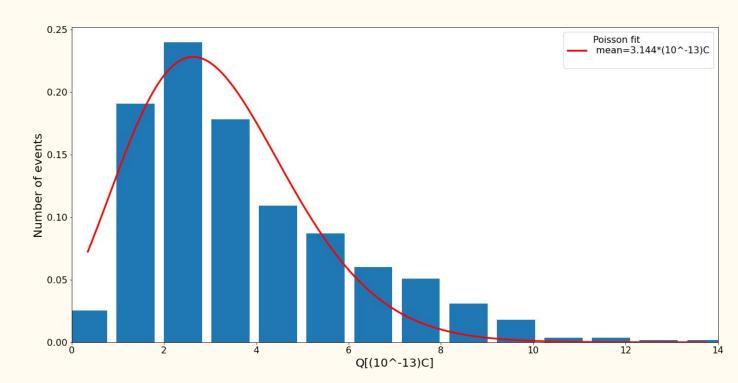


Repeatability


The offset was, for all the measurements, the media of points in an interval proportional to the integration area before the trigger.

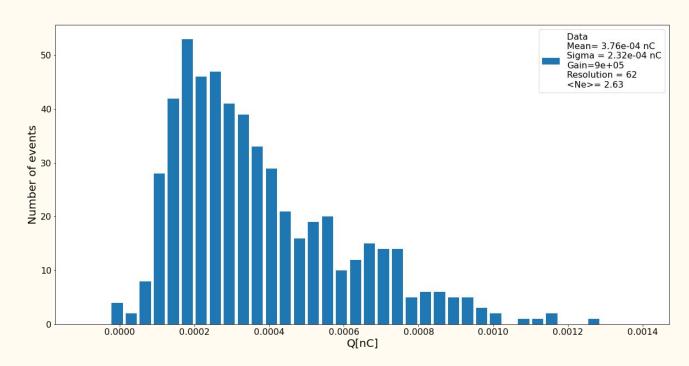

It was subtracted for each waveforms.

The integration was done with the numpy.trapz(y,x) (PYTHON) and the charge was obtained by the division for the resistance of the oscilloscope= 50Ω



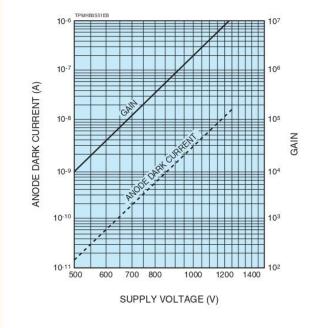
Repeatability:

The charge spectrum resulted poissonian.

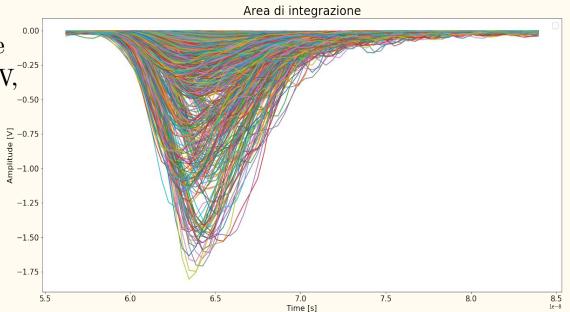


The following values was obtained from the data:

$$Ne = (\langle Q \rangle / rms)^2$$

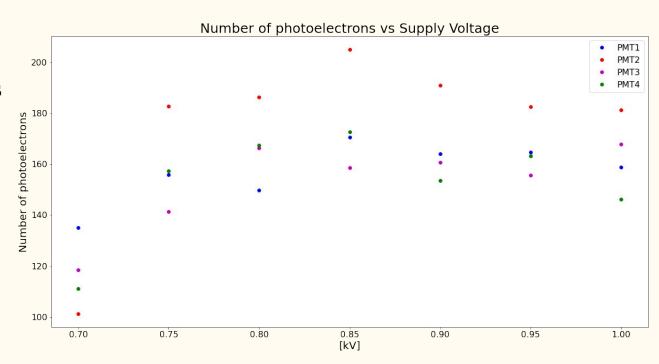

$$Gain=rms^2/(\langle Q \rangle^*e)$$

 $Ne_expected=1.15$ =($<Q>/e*Gain_datashe$ et)



This study was made at a supply voltage of 1000 V. The gain agrees with the Datasheet provided by Hamamatsu.

Figure 2: Typical gain and dark current characteristics



The equalization study was made at supply voltage of 700 V, 750 V, 800 V, 850 V, 900 V, 950 V, 1000 V.

We expected a constant number of photoelectrons because the amplitude of LED driver was kept constant.

$$Ne = (\langle Q \rangle / rms)^2$$

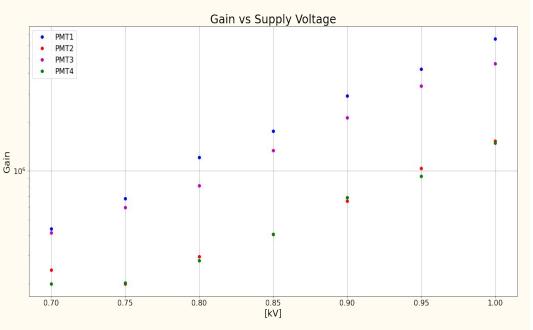
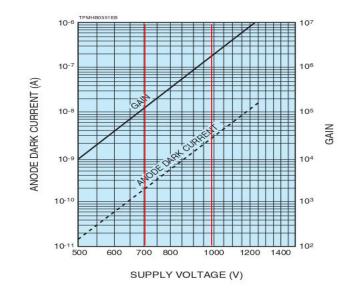
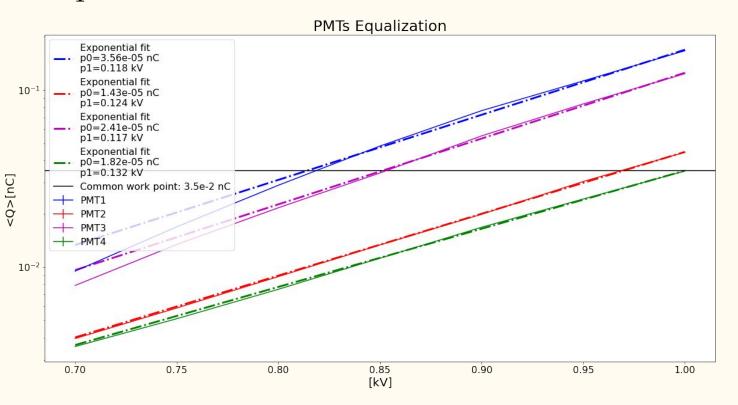




Figure 2: Typical gain and dark current characteristics

PMT	kV					
1	0.82					
2	0.97					
3	0.85					
4	1.00					

Thanks for your attention