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Foreword/1

The recent publication of the 2020 update of the European Strategy for Particle 
Physics (EUSUPP) [1] encourages feasibility studies for new large, long-term projects 
which will once again push our technological skills to their limits. 

At the same time, humanity faces unprecedented global challenges (climate change, 
pandemics, overpopulation) which demand the use of our resources to seek solutions 
through applied science innovations, rather than investing in fundamental research. 

Furthermore, there are indications that wide sectors of society no longer consider the 
furthering of our understanding of matter at the smallest distance scales, or other 
projects that require large and coordinated effort and significant funding, a top 
priority [2]. 
In this situation, ensuring the maximum exploitation of any resources spent on 
fundamental research is a moral imperative, and it may be a key to ensure that the 
long-term projects envisioned by the EUSUPP may be undertaken and sustained. 
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The Status Quo
The design of new detectors for particle physics, astro-particle physics, neutrino physics, and HE nuclear 
physics applications in the past 50 years systematically leveraged the most performant available 
technologies for particle detection, often fostering significant further advancements and spin-offs [3]. 
Yet one observes that the crucial underlying global paradigms of experimental design have remained 
mostly unchallenged across decades. 
• “Track first, destroy later”: charged particles can be traced by their ionization in low-material-budget 

elements, while neutral ones must undergo destructive interactions in a calorimeter to be detected 
 standard setup of experiments in HEP typically involves a low-material tracker followed by a thick 
calorimeter. 

• A focus on significant redundancy in our detection systems, ensuring robustness and enabling cross-
calibration of the resulting measurements  this by itself is something to grow out of

• Symmetrical layouts, both respecting physics conservation laws and attempting to simplify 
reconstruction  no guarantee of optimality when symmetry breaking mechanisms are at play

While these choices have served us very well for a long time, they are not meant to be “optimal”: i.e., 
they do not directly maximize a high-level utility function, such as the highest discovery reach for a 
physical process, or measurement precision for a given physics parameter. 
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Optimal for what?

The reason why detectors are complex is not only that the studied physics is complex: a lot 
has to do with Science being a demanding job. We want to study everything and do it 
better than previously

So, what does it mean for a detector to be optimal? 
What loss function do we aim to minimize? 
Does it make sense to speak of a single utility function?

Concerning the last question: I am convinced that it does, and I will try to convince you in 
the next few slides.
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Recipe for a perfect dinner

We are not alien to confidently taking complex decisions in a multi-objective space. We actually do it routinely... 
Of course, we are not deterred by knowing that our optimization target is not universal
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Recipe for a perfect trigger

Similarly, we are actually used to create multi-target optimization 
strategies, e.g. when we allocate resources for the trigger menu of a 
collider detector.

Consider CDF, Run 1 (1992-96): taking in 
a rate of 300 kHz of proton-antiproton 
collisions and having to select 50 Hz
of writable data created some of the 
most heated scientifically-driven, rationally motivated, painfully well 
argumented debates I ever listened to. The top quark had to be 
discovered, but it was not the only goal of the experiment...
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Recipe for a perfect detector

1. Assess your total budget and time-to-completion
2. Model as a steep function the cost of overriding 

budget or time
3. Assess the scientific impact of each achievable 

scientific results, optionally as a continuous function 
of their precision

4. Create a differentiable model of the geometry, the 
components, the information-extraction 
procedures, and the utility function

5. Construct a pipeline with those modules, enabling 
backpropagation and gradient descent functionality

6. Let the chain rule of differential calculus do the hard 
work for you 
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Makeshift surrogates of objectives

When we design the sensors for a tracking device, operate choices on budget allocations, define 
requirements for the various resolutions of detection elements, or choose composition and layout 
of active and passive material of calorimeter cells, we are implicitly trying to find an optimal 
working point in a loosely-constrained feature space of hundreds of dimensions. Such a task is 
clearly super-human. 
Because of that, we set our aim on makeshift surrogates of our real objectives. 

• E.g., we might desire our objective to be “the highest precision on the Higgs boson self-couplings 
our budget can ensure”, but all we can do is stick to useful proxies suggested by past experience, 
and rather focus on the “highest achievable energy resolution for isolated photons”, ignoring the 
rest of the parameter space 

• In a neutrino detector this would instead sound as “the highest precision on θ13 we can get”, 
when the focus becomes instead maximizing the number of interactions and reducing the 
background level.

• Our simulations only allow us to probe the result of specific choices, not to map 
interdependencies. 
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The design space is large – no, larger
New technological advancements are crucially enabling a better optimization of our 
instruments by reducing the cost of complex layouts. 
• 3D printing of scintillation detectors are being explored for neutrino physics [4]
• Very thin layouts of resistive AC-coupled silicon detector elements may provide 

large gains in spatial and temporal resolution [5]. 
The geometry space has become larger and more complex to explore.

Higher-performance demands are also arising: 
• Tracking in dense environments requires AI solutions
• Hitting the neutrino floor (e.g. at SuperCDMS) may require new paradigms for 

DM searches
• As we move fundamental physics research to space, payload and power 

consumption become major constraint, making applications especially sensitive 
to tough design decisions

• Boosted jet tagging at high pT –all the rage for NP searches at the LHC –demands 
us to invest in more granular, higher-performance hadron calorimeters 
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(Background: boosted decays and fat jets)

Energetic LHC collisions may produce heavy
objects with large momentum (top quarks, or 
W, Z, H bosons). When these decays, they
usually yield a collimated stream of particles – a 
single hadron jet.

A number of techniques allow the extraction of 
features sensitive to the heavy object decay

The point is however that high granularity and 
effective identification of constituents in dense 
environments has become unavoidable

Above: a top-pair decay produces two fat jets, 
where the individual subjects are visible
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Speaking of calorimeters…

High granularity has thus become a compelling requirement. 
• The CMS HGCAL detector [6] is a step in that direction; its design will improve by a large 

margin usable information about the showers, development, pointing, and composition. 
• For different reasons, similar developments and improvements are planned for other 

projects (e.g., CALICE [7] or CaloCUBE [8]). 
However, an end-to-end optimization of the design of such instruments has not been 
attempted yet; nor have models of the future potential of machine learning in pattern 
recognition been considered so far in the design phase

As a telling example, the HGCAL detection elements are arranged in a hexagonal symmetry 
which offers construction benefits but significantly complicates the most common imaging 
techniques employing convolutional neural networks (CNN) to shower reconstruction. While 
solutions to this issue do exist (e.g., see [9]), this is an example of misalignment between 
design and potential exploitation. 
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One further note on calorimetry
Take the LHC experiments for a telling example. CMS was 
originally endowed with a less performant hadron calorimeter 
than ATLAS. But hadron calorimetry ended up being crucial for a 
number of new physics searches involving boosted jets. 
CMS regained the lost ground through the high performance of 
its “particle flow” reconstruction algorithm [10]. 

This was only possible thanks to the high magnetic field integral 
of CMS, which spreads out charged particles of different 
momenta within jets, easing their matching to calorimeter 
deposits. 

This post-hoc exploitation of the solenoid characteristics, whose 
original specifications were rather driven by compactness and 
transverse momentum resolution of charged particles, is a 
striking example of how the combined search of hardware and 
software solutions may be proficuous to inform the 
optimization of a modern particle detector.
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A hybrid calorimeter?
As particle flow techniques allow the tracing of individual particles and the complete reconstruction of 
dense, collimated jets, we must have more of that:

• Optimizing the design of a detector for a long-timescale project based on reconstruction capabilities
which will be available in the future [11] seems the right thing to do, if we can pull that off (more on 
this infra)

• Integrating tracking and calorimetry layers may improve the «image» reconstruction of energetic 
hadronic jets, shown to be crucial for high-mass new particles

• Measuring muons from their radiative loss in a dense environment using convolutional neural 
networks was first shown to be viable (J. Kieseler, CERN) by «accident», as a tangential observation 
of NN outputs from shower reconstruction in the phase-2 CMS endcap calorimeter. 
 This needs to be pursued for high-energy collisions (see infra)

• Nuclear interactions have always been dreaded in a tracker, but in combination with calorimetry
they may strengthen particle-ID (using probabilistic information coming from nuclear cross sections
of different species)
 this may be of special interest to a number of applications
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Muon energy measurement in a calorimeter?
Muons interact with matter by ionization, pair production, bremsstrahlung, and 
photonuclear reactions. The E loss is dominated by the high-end of the Landau distribution 
(knock-on electrons). 

Left: mass stopping 
power for positive 
muons in Cu,showing 
the radiative energy
loss onset above 1 TeV

The total release is very modest and stochastic, so we have to rely on 
magnetic bending for inference on muon momentum
Bending measurements break down for TeV energies: in 2T, a 1 TeV muon 
traversing 2m of field is deflected by less than a mm 

 resolution scales: e.g., in ATLAS  σ(p)/p = 0.2 p

(From a CCFR study [22])
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Muon energy measurement in a calorimeter?
In a preliminary study, we showed that 
resolutions of 30-35% are achievable for 2 TeV
muons in a highly granular, homogeneous 
calorimeter [12]

• Genetically breeded kNN learners used for this study
• Spatial information proven to be crucial for the task (blue 

vs red double arrow for 68.3% CI, see below, left)

68% C.I.
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(Soon to be published) results with CNNs

The study shown supra has now been extended to 
higher energy and by use of a customized deep 
learning architecture, which combines convolutional 
blocks and dense layers using both high-level features 
and raw «image-like» energy deposits in 3D space

Of relevance is the point that the pattern of radiation deposits
contains information useful to regress to true muon energy
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blocks and dense layers using both high-level features 
and raw «image-like» energy deposits in 3D space

Of relevance is the point that the pattern of radiation deposits
contains information useful to regress to true muon energy

Results (right) show that one can recover 20-25% resolution for 
muons of up to 4 TeV by combining the radiation loss information 
with curvature information (here assumed is a relative 
momentum resolution of 20% from magnetic bending at 1 TeV, as 
e.g. quoted by ATLAS in mid-rapidity region)
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How good is that, BTW?

Measuring multi-TeV muons has been a 
Group-2 issue before LHC experiments 
started to consider it 
The resolution of muons traversing 
1.5km of ice (=3850 X0) in IceCUBE has 
been determined with three different 
methods in[23]. 

Although of course the problem is very 
different, I have not resisted the 
temptation to overlay to the graph on 
the right the ballpark of the resolution 
we achieve with a 2m-long lead 
tungstate calorimeter (=225 X0) + CNN 
reconstruction 

 3x better
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How large are the gains of a full optimization?

I recently provided a clear example [13] of how experimental design as is carried out 
today leaves ample room for improvement from the systematic study of even 
seemingly irrelevant choices for, e.g., the placement of active and passive material in 
a simple detector.

The chance of doing so was offered by my refereeing work of the detector proposed 
by the MUonE collaboration [14], which aims at determining with high precision the 
cross section of elastic muon-electron scattering. 

In the cited study I demonstrated, through the direct exploration of the parameter 
space of detector geometry, how large gains in suitable utility functions (related to 
the resolution in the event q2) can be obtained by moving away from choices 
dictated by past experience
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One example of geometry optimization: MUonE

MUonE [14] aims to determine with high precision the muon-
electron elastic scattering differential cross section, to extract 
hadronic contributions and reduce the systematics of the g-2 muon 
anomaly
The experiment must be sensitive to hadronic loop effects 
particularly at high q2, where a 10-4 measurement may substantially 
improve the theoretical understanding of the g-2 value

Above: layout of one of 40 1m-long stations A virtual hadronic loop
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MUonE optimization

By optimizing layout with a discrete sampling, 
I proved how a factor of 2 improvement in the 
relevant metric could be achieved without 
increase in detector cost

The study also proved how dreaded systematic 
effects from positioning uncertainties could be 
nullified by software means
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Sample results
The study was *not* performed with deep
learning technologies, as it was not strictly 
necessary given the reduced space of 
design choices I wished to investigate.

The results prove that design optimization
is not something alien to our reach, but 
rather, something we should pay more 
attention to!
We can only guess how large are the gains 
in the final experimental objectives possible 
if a fully differentiable model is created for 
detectors of significantly higher complexity 
than MUonE.

My guess: huge. Above: relative resolution in event q2 for different configurations
(the higher, black line is the original proposal by the MUonE coll.)

Original layout

Opimized layout
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Speaking of systematic uncertainties,
MUonE correctly identified the need for locating the scattering 
vertex to within 10μm along the beam axis (it has a strong 
impact on the q2 resolution), and proceeded to design a very 
fancy holographic laser system, to be mounted on each station 
(=40 systems) to monitor the sensors locations

Cost: several hundred kEuros

As a by-product of the modeling of detector + information 
extraction process, the optimization study showed that with 5’ 
of muon beam data, the location, tilt and bow of all detector 
and target elements can be determined with O(1μ) accuracy by 
a global fit to the vertex!

This is an example of the dividends that the study of a full model 
of (physics)+(detector)+(reco method)+(inference extraction) 
can provide
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Top left: global χ2 vs x tilt; right: vs z offset;
Bottom left: vs y tilt; right: vs transverse bow.
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Computer science to the rescue

Progress in CS redefined performance standards of our technologies, and reshaped the 
way we think about optimization, by providing us with deep learning algorithms that 
revolutionize common tasks and surpass human performance. We can today identify AI 
ingredients in, e.g., language translation, speech recognition, self-driving vehicles. 
 Of course, that AI is not general but application-specific: its potential of providing new 
solutions to old tasks depends on our ability to create the right interfaces. 

In HEP, ML applications caught up rather slowly, but NNs and gradient boosting techniques 
eventually operated a paradigm shift, improving the performance of our measurements by 
large amounts. 

A new paradigm shift is now offered by differentiable programming [15], which eases the 
systematic search of minima of arbitrarily complex multi-dimensional functions; by casting 
the whole problem in a differentiable framework a full end-to-end optimization becomes 
possible.
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INFERNO
As an example of what differentiable programming 
can do for us, I designed with P. de Castro an 
innovative algorithm [16] using automatic 
differentiation to construct a loss function that 
directly targets the information content of the 
statistical summary produced by the neural 
network. 
If the loss function is constructed to incorporate the 
effects of nuisance parameters on the measurement 
objective, virtual optimality of the classification task 
and large improvements in precision can be 
achieved over procedures that account for nuisance 
parameters downstream of the NN training.

Top: Control flow of INFERNO algorithm, which extracts 
optimal NN parameters given a final analysis objective, 
such that the resulting measurement becomes maximally 
robust to nuisance parameters. Data x generated by a 
simulator g (left block) which depend on nuisances θMC
are used to train a NN h (second block), producing output 
y. The output is made differentiable by a softmax function
(third block) and used to construct a summary statistic t, 
which is histogrammed to compute a saturated likelihood
LA used to perform inference (right block). The expected 
variance U on the parameter of interest may be derived 
from the information matrix I, and used as NN loss, whose 
parameters φ are optimized by backpropagation. 

Left: profile likelihood on the 
parameter of interest for a 
neural network with (blue) and 
without (red) the feedback on 
effect of nuisances provided by 
INFERNO
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The code of INFERNO (in TF 1.0) is available on github.

Giles C. Strong also made available a PyTorch 
implementation and is demonstrating its performance on 
astro-HEP use case.

Lukas Layer ported the code to TF2.0 

Presently, this technology is being tested in a
real CMS analysis, using open Run1 data to replicate
a top cross section measurement, by Lukas Layer



A study of muon shielding in SHIP

In another seminal work [17], local generative 
surrogates of the gradient of the objective 
function were proven to allow for the 
minimization by SGD and a strong reduction in 
muon background fluxes in the SHIP experiment

Geometry optimization at work in real time!
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Realigning design choices and ultimate goals
The target of MODE is to design and offer to the community a scalable, versatile architecture that 
can provide end-to-end optimization of particle detectors, proving it on a number of different 
applications across different domains.

Study cases: 
- Demonstration of muon energy 

measurement in optimized calorimeter 
article in preparation

- Muon tomography detector optimization 
[18] in progress

- Hybrid calorimeter design integrating 
tracking layers  activity starting

Other use cases being considered include:
- Hadron therapy (iMPACT project [19]); 
- Muon collider detector shielding [20];
- Optimization of MUonE calorimeter;
- Optimized search for long-lived signatures   

at FCC-ee
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And for the time being...

«Simpler» use case: muon tomography. We need no 
surrogate of a simulator, yet all other pieces of the 
puzzle still need to be carved and set in.

For a simple test, we model a scanned volume 
including a Pb block of 0.5x0.1x0.1 m3 inside a 
0.6x1x1m3 of lower-Z material
The system «learns» how to compromise cost and 
precision, and where detector elements are less 
useful
A number of shortcuts have been taken to develop 
this purposedly crude model – but once we have 
something that «breathes», we may start building 
into it functionality and detail

Right: scheme 
of the 
modeled 
apparatus 
(graph courtesy 
G. C. Strong)
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*VERY* preliminary (yesterday’s) results

These graphs show the result of a run 
of 100 epochs training, followed by a 
prediction with 100k muons
First proof of principle (very low 
statistics) of correct training of a 
differentiable model of a schematic 
muon tomography apparatus.

The loss is a combination of detector 
cost (itself a function of sensors 
efficiency and resolution) and RMSE 
on rad length estimate
Still a looong way to go, but an 
important milestone for this use case

The code and results shown have been produced by Giles C. Strong

Above, top to bottom: loss, loss composition, resolution 
map, and efficiency map of detection elements after 
minimization.

Right: predicted and true X0 of passive volume
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Realigning our design choices to future AI
A point which cannot be stressed enough is that if we design today something that will operate 10 
or 20 years in the future, we need to account for the pattern recognition capabilities of future 
automated systems
In 20 years, will we use a Kalman filter to reconstruct trajectories in our trackers, or photon energy 
and direction in our calorimeters? 
No, we won’t. We will employ AI technology, streamlined by a decade of consolidation in similar 
tasks.

Shouldn’t we then build those devices by considering how AI technology could best exploit them? If 
we do not, we will suffer a misalignment of our design choices and the future capabilities of the 
software we will end up using.

How to get around this problem? 

We can and should try to model increasingly performant pattern recognition in our optimization 
loops, and verify whether there are discontinuities in the solutions space.
It is not going to be easy, but it is IMHO absolutely necessary to start getting equipped.
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Four-slide description of a differentiable model
for design optimization - 1
An end-to-end detector design optimization task can be briefly formalized in the 
following way. 

We start with a simulation of the physics processes of relevance for the considered 
application, which generates a multi-dimensional, stochastic input variable x, 
distributed with a PDF f(x). 
The input is turned by the simulation of the detection apparatus into sensor 
readouts z distributed with a PDF 

p(z|x,θ), 
which constitute the observed low-level features of the physical process; readouts z
depend through p( ) on parameters θ that describe the physical properties of the 
detector and its geometry. 
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The observations z are used by a reconstruction model R( ) that produces high-level features 
ζ(θ) = R[z,θ,ν(θ)]

(e.g. particle four-momenta), by employing knowledge of the detector parameters as well as a 
model of the detector-driven nuisance parameters ν(θ) which affect the pattern recognition task. 

In turn, high-level features ζ(θ) constitute the input of a further, less dramatic, dimensionality 
reduction, the data analysis step: this is typically performed by a classifier or regressor NN( )
powered by a neural network. 

Once properly trained for the task at hand, the network produces a low-dimensional summary 
statistic 

s = NN[ζ(θ)]
with which inference can finally be carried out to produce the desired goal of the experiment.

Four-slide description of a differentiable model
for design optimization - 2
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In general, one may formally specify the problem of identifying optimal detector parameters as that of 
finding estimators �𝜽𝜽 that satisfy

�𝜽𝜽 = 𝒂𝒂𝒂𝒂𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦
𝜽𝜽

�𝑳𝑳 𝑵𝑵𝑵𝑵 𝜻𝜻 , 𝒄𝒄 𝜽𝜽 𝒑𝒑 𝒛𝒛 𝒙𝒙,𝜽𝜽 𝒇𝒇 𝒙𝒙 𝒅𝒅𝒙𝒙𝒅𝒅𝒛𝒛

c(θ) is a function modeling the cost of the considered detector layout of parameters θ, and the loss 
function L[NN,c] is constructed to appropriately weight the result of the measurement in terms of its 
desirable goals, as well as to obey cost constraints and other use-case-specific limitations.

Since in the cases of interest the PDF p(z|x,θ) is not available in closed form –the considered models 
are implicit–, we must rely on forward simulation: we approximate �𝜽𝜽 with a sample of n events:

�𝜽𝜽𝒂𝒂 = 𝒂𝒂𝒂𝒂𝒂𝒂𝐦𝐦𝐦𝐦𝐦𝐦
𝜽𝜽

𝟏𝟏
𝒏𝒏
�
𝒊𝒊=𝟏𝟏

𝒏𝒏

𝑳𝑳 𝑵𝑵𝑵𝑵 𝑹𝑹 𝒛𝒛𝒊𝒊 , 𝒄𝒄 𝜽𝜽

where zi is distributed as F(xi,θ) to emulate p(z|x,θ) as xi is sampled from its PDF f( ) by the simulator. 
One may thus obtain an estimate of the loss function and the detector parameters which minimize it. 

Four-slide description of a differentiable model
for design optimization - 3
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It has been shown how in applications such as those of our interest it is viable to approximate the 
non-differentiable stochastic simulator F( ) with a local surrogate model, 

z = S(y,x,θ), 

that depends on a parameter y describing the stochastic variation of the approximated 
distribution[49]. This allows to descend to the minimum of the approximated loss �𝑳𝑳(𝒛𝒛) by following 
its surrogate gradient

𝛁𝛁𝜽𝜽�𝑳𝑳(𝒛𝒛) =
𝟏𝟏
𝒏𝒏
�
𝒊𝒊=𝟏𝟏

𝒏𝒏

𝛁𝛁𝜽𝜽𝑳𝑳[𝑵𝑵𝑵𝑵 𝑹𝑹 𝑺𝑺 𝒚𝒚𝒊𝒊,𝒙𝒙𝒊𝒊,𝜽𝜽 , 𝒄𝒄(𝜽𝜽)] .

The above recipe requires one to learn the differentiable surrogate S( ): this is a task liable to be 
carried out independently from the optimization procedure.

The modular structure of a differentiable pipeline modeling the optimization cycle allows the user to 
turn on and off specific parts of the chain, helping the system in its exploration of the feature space. 

Four-slide description of a differentiable model
for design optimization - 4
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The strategy of MODE

We are fully aware that the dream of informing the design of a complex detector for a 
fundamental physics endeavour (be it HE, astro-, Neutrino, or Nuclear physics) entails a 
walk in the desert
Yet we must start it, as in 20 years the shortcomings of having designed experiments that 
are misaligned with goals and information-extraction procedures will otherwise be paid 
dearly.
The strategy is thus to start with easy use cases, where further proof may be brought of 
the gains of using DL architectures to parametrize the essential ingredients of the design 
problems
Hopefully, we will be able to convince the community, or else, we’ll have to wait for a 
generation change.

The important observation is that the developed architectures for optimization are 
modular, hence we will be able to recycle part of the work for one application when we 
move to the next one.
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Status and next steps
• An article describing the MODE program has been 

published last month in Nuclear Physics News International 
[21]

• A white paper on differentiable programming for detector 
design optimization is being drafted

• We are organizing a workshop on “Differentiable 
Programming for Design Optimization” on September 6-8 
2021 in Louvain-la-Neuve, to allow interested scientists to 
join and discuss together the means and the possible 
applications

• Extra support for this activity is provided by IRIS-HEP and JENAA

Group 2 members of INFN-PD or UNIPD are welcome to 
propose use cases of interest and share expertise / 
collaborate 
Every other solved application = a publication AND added 
knowledge base on solving these hard problems!
You are also most welcome to participate to MODE activities, 
or propose to become a member 
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MODE_INFN : a new Group 5 endeavour

In order to create a community of experts within INFN, who can participate 
in the process started within MODE and bring up for modeling new use cases 
of interest to INFN, we are proposing a new INFN experiment (or better, a 
collaboration) within Group 5

Why Group 5? 

Because our activities cut diagonally into GR1, GR2, and GR3, and our focus 
is R&D for the development of tools, rather than their exploitation for 
specific applications. A synergy with experimental groups that have use cases 
of interest will hopefully be easy to establish
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Tentative members and sites of MODE_INFN
Padova: Azzi, Collazuol, Conti, Dorigo (RN), 
Lucchesi, Rossin, Strong, Tosi (RL), Verlato, ...
Firenze: Anderlini, Barbetti, Bonechi, Borselli, 
Ciulli, D’Alessandro, Lenzi, Viliani (RL)
Napoli: Cimmino (RL), D’Errico, Saracino, 
Ambrosino, Vitiello
Roma: Giagu (RL), Ippolito + PhD
Bari: Maggi, Venditti (RL), ...

Activities:
WP1: Software development
WP2: Tomography optimization
WP3: Calorimetry optimization
WP4: Other applications

• MODE members who have been asked and agreed to 
collaborate on WPs brought forth by MODE_INFN: 

Andrea Giammanco (UcL); Pietro Vischia (UcL); Jan 
Kieseler (CERN); Andrey Ustyuzhanin (HSE); Fedor 
Ratnikov (HSE); Alexey Boldyrev (HSE); Pablo Martinez 
Ruiz del Arbol (IFCA); Julien Donini (UCA)

• Plus all other MODE members, on the general goals
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MODE_INFN and You
If you are doing experimental research in HEP, astro-HEP, neutrino 
physics, or high-energy nuclear physics, or if you are working at spin-
offs involving, e.g., muon tomography, hadron therapy, or other 
endeavours which operate with instruments that extract information 
from the interaction of energetic radiation with matter, you are very 
likely to have a use case – a system liable to benefit from a study with 
differentiable programming.

The idea of MODE_INFN is to bring together ML experts who are 
developing the interfaces for these applications, with the researchers 
who have problems to solve in their area of interest

We cannot offer a solution to any given problem (we lack the 
personpower to work on-demand), but together we may work toward 
it

 Consider joining MODE_INFN, or MODE, and bring your use case!

Do I have a use case checklist:

Are you involved in the design, 
assembly, or upgrade of an instrument?

Can you specify one or a set of 
desirable scientific goals from its use?

Are those goals achieved through
information processing?

If your answers to all are «yes», 
you have something to optimize and
chances are this can’t be done 
without a deep learning model of
the full information extraction chain.
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THANK YOU FOR YOUR ATTENTION!
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