

Supernova Neutrino Detection with LEGEND

Samuel L. Watkins Director's Postdoctoral Fellow, LANL on behalf of the LEGEND collaboration

SNvD 2023@LNGS June 1, 2023

LA-UR-23-25517

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Two-Neutrino Double Beta Decay

- Double beta decay
 - Energetically allowed
 - $2\nu\beta\beta$ conserves lepton number
 - Continuous beta spectrum up to $Q_{\beta\beta}$

LOS Alamos

Samuel L. Watkins | SNvD 2023@LNGS

arXiv:2202.01787

Two-Neutrino Double Beta Decay

- Double beta decay
 - Energetically allowed
 - $2\nu\beta\beta$ conserves lepton number
 - Continuous beta spectrum up to $Q_{\beta\beta}$
- But what if the neutrino was its own antiparticle?

Samuel L. Watkins | SNvD 2023@LNGS

arXiv:2202.01787

The Case for Neutrinoless Double Beta Decay

- The discovery of 0νββ would completely change our understanding of the laws of our Universe
 - Lepton number is not conserved
 - Neutrinos are Majorana particles
 - Explains the matter-antimatter asymmetry via leptogenesis
 - Provides a mechanism for neutrino mass generation
- The LEGEND Collaboration is searching for this process in a ton-scale experiment with the ⁷⁶Ge isotope

LEGEND Concept

- Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay \bullet
- Merger of two successful programs: GERDA and MAJORANA ullet
 - Each based on high-purity Ge detectors enriched in ⁷⁶Ge

High-Purity Germanium Detectors

- A well-established detector concept
 - Point-contact detection scheme
- Used in Majorana and GERDA
 - Ionization detectors
 - Low background
 - Enriched in ⁷⁶Ge for $0\nu\beta\beta$ searches
 - Can be directly immersed in LAr

LEGEND-200: Experimental Design

- 200 kg of HPGe detectors
 - Taking data now!
- Using existing **GERDA** infrastructure at **LNGS**
 - Atmospheric liquid argon
 - Anticipated exposure of 1 t-yr
 - 2.5 keV FWHM resolution at $Q_{\beta\beta}$
 - Mix of Ge detector geometries (PPC, BEGe, ICPC)
- **Background goal**: $< 2 \times 10^{-4}$ cts/(keV kg yr)
 - Improved electronics
 - Improved pulse shape discrimination methods
 - Improved LAr veto

Person for scale:

•

"Low" Energy Background Model for L-1000

Jackson Waters Master's Thesis (UNC)

- Simulation of background over all energies via Geant4 framework
- Uses L-1000 geometry
- Assumes undergroundsourced LAr
- Includes detector surface effects
- No analysis cuts included in this comparison

Presupernova and Supernova Neutrino Flux

• Could be sensitive to both phenomena originating from supernovae

LEGEND

Samuel L. Watkins | SNvD 2023@LNGS

Plots by CJ Nave (UW)

Presupernova and Supernova Neutrino Flux

• Could be sensitive to both phenomena originating from supernovae

For PreSN, assume:
$$m = 15 M_{\odot}$$
, $d = 200 \text{ pc}$
Patton *et al* 2017 *ApJ* **851** 6

For SN, assume: $m = 20M_{\odot}$, d = 200 pc, t = 20 s Nakazato *et al* 2013 *ApJS* **205** 2

Plots by CJ Nave (UW)

Neutrino-Electron Elastic Scattering (*veES***)**

- Contributions to rate originate from both neutral and charged current
 - Different cross section for different neutrino types

OS Alamos

$$\nu_x\left(\overline{\nu}_x\right) + e^- \to \nu_x\left(\overline{\nu}_x\right) + e^-$$

2023/06/01 12

Samuel L. Watkins | SNvD 2023@LNGS

 $e^ \overline{\nu}_i$

Assuming: $m = 20 M_{\odot}$, d = 200 pc, t = 20 s

Supernova *veES* in LEGEND-1000

• PreSN:

 Background is well above the PreSN rate for most energies

• SN:

- Expect ~2 evts/burst/ton from background
- Expect ~25 evts/burst/ton for both Ge and Ar over spectrum

Plots by CJ Nave (UW)

Charged-Current Neutrino-Nucleus Scattering (*vNCC***)**

- Interaction changes proton number
- In Germanium-76:
 - $\nu_e + {}^{76}\text{Ge} \rightarrow {}^{76}\text{As}^* + e^-$
 - $\bar{\nu}_e + {}^{76}\text{Ge} \rightarrow {}^{76}\text{Ga}^* + e^+$
- In Argon-40:
 - $\nu_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$
 - $\bar{\nu}_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{Cl}^* + e^+$

$$\sigma_k = \frac{G_F^2 \cos^2 \theta_c}{\pi} E_e p_e F(Z, E_e) \times \left[B(F)_k + \left(\frac{g_A}{g_V}\right)^2 B(GT)_k \right]$$

Assuming: $m = 20 M_{\odot}$, d = 200 pc, t = 20 s

Supernova vNCC in LEGEND-1000

• What event chains could LEGEND observe?

$$\sigma_k = \frac{G_F^2 \cos^2 \theta_c}{\pi} E_e p_e F(Z, E_e) \times \left[B(F)_k + \left(\frac{g_A}{g_V}\right)^2 B(GT)_k \right]$$

Coherent elastic neutrino-nucleus scattering (CEvNS) Plots by CJ Nave (UW)

- Nuclear recoil which deposits energy in either a Ge detector or the liquid Ar
 - Some amount of energy creates ionization, which we can detect
 - Detection will require low thresholds

$$\nu_{x}\left(\overline{\nu}_{x}\right) + {}_{\mathrm{Z}}^{\mathrm{A}}\mathrm{X} \rightarrow \nu_{x}\left(\overline{\nu}_{x}\right) + {}_{\mathrm{Z}}^{\mathrm{A}}\mathrm{X}$$

$$\frac{d\sigma}{dT_N} = \frac{G_F^2 M_N}{4\pi} \left(1 - \frac{M_N T_N}{2E_\nu^2}\right) Q_W^2 F_W^2(Q)$$

⁴⁰Ar: ARIS Collaboration, PRD 97, 112005 (2018)

os Alamos

Samuel L. Watkins | SNvD 2023@LNGS

2023/06/01 16

Assuming: $m = 20 M_{\odot}$, d = 200 pc, t = 20 s

Supernova CEvNS in LEGEND-1000

• PreSN:

 Background is higher than SN rate until perhaps ~1 ms before core collapse

- **SN** between 1 keV and 10 keV:
 - Expect ~0. 1 evts/burst/ton from background
 - Expect $\geq 10^3$ evts/burst/ton in Ge and Ar

Plots by CJ Nave (UW)

Assuming: $m = 20 M_{\odot}$, d = 200 pc, t = 20 s

Supernova Inverse Beta Decay (IBD)

- LEGEND-1000 will have a kiloton-scale water shield instrumented with PMTs
 - Designed as a muon veto
- Electron antineutrinos incident on water will result in a high rate of IBD

$$\bar{\nu}_e + p \to n + e^+ \qquad \sigma = \frac{G_F^2 E_e p_e}{\pi} |U_{ud}|^2 (1 + 3g_A^2)$$

- Expect **4**. **3**×**10⁵ evts/burst** in L-1000
 - Expected background: 1.2 evts/burst

Supernova Neutrinos: Counts vs. Distance

- We have been assuming 200 pc (imagine Betelgeuse)
 - What about farther distances?
 - Counts scale as $\sim 1/r^2$

- IBD is our strongest channel
- Distances up to **O(1) kpc**, also expect significant counts for the other interactions

Summary and Outlook

- LEGEND-1000 is **uniquely sensitive** to many neutrino interaction channels
 - *veES*, *vNCC*, *CEvNS*, IBD
 - Thanks to the **combination** of Ge, LAr, and water shield
- May observe some effects of presupernova neutrinos as an increasing rate
- Expect significant counts of supernova neutrinos over background
- **Complementary** to other experiments searching for supernova neutrinos

LEGEND Collaboration for $0\nu\beta\beta$

- Large international collaboration
 - ~55 institutions, ~280 members
 - MAJORANA + GERDA + more!

Goal: Achieve sensitivity of $T^{0
uetaeta}_{1/2}\sim 10^{28}~{
m yr}$ in ⁷⁶Ge

Backup

LEGEND Overview

Mission: "The collaboration aims to develop a phased, **Ge-76 based** double-beta decay experimental program with discovery potential at a **half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results**."

Select best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups and experiments.

Majorana	GERDA	Both
 Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.) Low noise electronics improves PSD Low energy threshold (helps reject cosmogenic background) 	- LAr veto - Low-A shield, no Pb	 Clean fabrication techniques Control of surface exposure Development of large point-contact detectors Lowest background and best resolution 0vββ experiments

First phase:

- Deploy 200 kg in upgrade of existing infrastructure at LNGS
- BG goal: <0.6 cts/(FWHM t yr)
- Discovery sensitivity at a half-life of 10²⁷ years
- Currently taking data

Subsequent stages:

- 1000 kg, staged via individual payloads
- Timeline connected to review process
- BG goal <0.03 cts/(FWHM t yr)
- Location to be selected

High-Purity Germanium Detectors

- Most detectors will be of ICPC type
 - Large mass, good drift time, high surface area to volume ratio

R. J. Cooper et al., NIMA 629 (2011), 303-310

"Low" Energy Background Model for L-1000 With Cuts

Jackson Waters Master's Thesis (UNC)

- Simulation of background over all energies via Geant4 framework
- Uses L-1000 geometry
- Assumes undergroundsourced LAr
- Includes detector surface effects
- With analysis cuts on:
 - Detector surface events
 - Multiplicity
 - LAr scintillation

LEGEND-200 with water shield

Samuel L. Watkins | SNvD 2023@LNGS