

Neutrino mass constraints in next-generation experiments with Supernovae

 $SN\nu D-2023@LNGS$

Federica Pompa - fpompa@ific.uv.es

Pompa, Capozzi, Mena, Sorel (PRL 129, 2022)

01/06/2023

2

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) $\text{KATRIN} \Rightarrow m_\beta < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\mu} < 5.7 \text{ eV}$ (95% CL)

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> $(CMB+BAO) \Rightarrow m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) $\text{KATRIN} \Rightarrow m_\beta < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010)</u>

Kamiokande-II (SN1987A) $\Rightarrow m_{\mu} < 5.7 \text{ eV}$ (95% CL)

From cosmology: <u>Di Valentino,Gariazzo,Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV}$ (95% CL)

From kinematic measurements: <u>KATRIN Collaboration (2021)</u> KATRIN $\Rightarrow m_{\beta} < 0.8 \text{ eV}$ (90% CL)

From $0\nu\beta\beta$ measurements: <u>KamLAND-Zen Collaboration (PRL 130, 2022)</u> KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16$ eV (90% CL)

Time-of-flight constraints:

<u>Pagliaroli, Rossi-Torres, Vissani (Astropart, Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\nu} < 5.7 \text{ eV}$ (95% CL)

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> (CMB+BAO) \Rightarrow $m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) KATRIN $\Rightarrow m_{\beta} < 0.8$ eV (90% CL)

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints:

<u>Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\mu} < 5.7 \text{ eV}$ (95% CL)

$\Gamma = G_{0\nu} M_{0\nu}^2 \varepsilon (\Delta L = 2)$

$$m_{\beta\beta} = \sum_{i} |U_{ei}|^2 m_i$$

Nuclear Models dependence! Majorana neutrino assumption!

From cosmology: <u>Di Valentino, Gariazzo, Mena (PRD 104, 2021)</u> (CMB+BAO) $\Rightarrow \sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: KATRIN Collaboration (2021) $\text{KATRIN} \Rightarrow m_\beta < 0.8 \text{ eV} (90\% \text{ CL})$

From $0\nu\beta\beta$ measurements: KamLAND-Zen Collaboration (PRL 130, 2022) KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16 \text{ eV}$ (90% CL)

Time-of-flight constraints: <u>Pagliaroli, Rossi-Torres, Vissani (Astropart. Phys. V33, 2010)</u> Kamiokande-II (SN1987A) $\Rightarrow m_{\nu} < 5.7 \text{ eV}$ (95% CL)

$p + e^- \rightarrow n + \nu_e$

Progenitor independent!

Final stage of the core collapse. Emission of ν and $\bar{\nu}$ of all flavors. Mean energies: $\mathcal{O}(10)$ MeV

Supernova bursts in galaxies $N \gg 1$ $N \sim 1$ Mpc Kpc

Rate $\sim 1/yr$ Rate $\sim 0.01/yr$

Diffuse Supernova Neutrino Background

 $N \ll 1$ Gpc J.Beacom (TAUP2011)

Rate ~ $10^8/yr$

11

Supernova bursts in <u>near</u> galaxies

Rate ~ 0.01/yr Rate ~ 1/yr

Diffuse Supernova Neutrino Background

Rate $\sim 10^8/\text{yr}$

11

Detector

Interaction

Detector

Interaction

Source (and propagation!)

				200
$eyev-SmirndDighe, SmirndD_e = p \Phi^0_{\nu_e} + e^{-\frac{1}{2}}$	DV-Wolfenstei $ \frac{1}{(1-p)} \Phi^{0}_{\nu_{x}} $	して ここ n effect こく 00)		
$v_x = \frac{1}{2} [(1 - p)]$	$(p) \Phi^{0}_{\nu_{e}} + (1 - p) $	$p) \Phi^0_{\nu_x}$	3	
NO $ U_{e3} $	$ U_{e1} ^2$			
$ \mathbf{O} U_{ei}$	$_{2} ^{2} U_{e3} ^{2}$			

DUNE: D = 10 kpc

10 s	50 ms
~ 845	~ 201
~ 1372	~ 54
~ 1222	~ 95

$$M = 8.8 \, M_{\odot}$$
$$M = 19 \, M_{\odot}$$

10 s	50 ms
~ 3644	~ 200
~ 5441	~ 88
~ 4936	~ 120

UPPER BOUNDS ON

$$m_{\nu} = \sqrt{\sum_{i=1}^{3} |U_e|}$$

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \leq 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \text{ eV}$ $m_{\nu} \leq 1.65^{+0.54}_{-0.40} \text{ eV}$

DUNE: D = 10 kpc

UPPER BOUNDS ON

$$m_{\nu} = \sqrt{\sum_{i=1}^{3} |U_{e_i}|}$$

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \leq 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \text{ eV}$ $m_{\nu} \le 1.65^{+0.54}_{-0.40} \text{ eV}$

DUNE: D = 10 kpc

10 s	50 ms
~ 845	~ 201
~ 1372	~ 54
~ 1222	~ 95

$$M = 8.8 \, M_{\odot}$$
$$M = 19 \, M_{\odot}$$

10 s	50 ms
~ 3644	~ 200
~ 5441	~ 88
~ 4936	~ 120

UPPER BOUNDS ON

$$m_{\nu} = \sqrt{\sum_{i=1}^{3} |U_e|}$$

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \leq 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \text{ eV}$ $m_{\nu} \leq 1.65^{+0.54}_{-0.40} \text{ eV}$

HK: D = 10 kpc

$M = 8.8 M_{\odot}$	10 s	50 ms
90%IBD	16003	414
ES+10%IBD	3462	249
90%IBD	16223	466
ES+10%IBD	3419	130
90%IBD	16678	573
ES+10%IBD	3491	178

Ny

D

<u>Dighe, Smirnov (PRD 62, 2000)</u>

$$\Phi_{\nu_e} = p \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0$$

$$\Phi_{\nu_x} = \frac{1}{2} [(1-p) \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0]$$

	p	\bar{p}
NO	$ U_{e3} ^2$	$ U_{e1} ^2$
ΙΟ	$ U_{e2} ^2$	$ U_{e3} ^2$

V

 \mathcal{U}

ZZ

17

$$\Phi_{\nu_e} = p \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0$$

$$\Phi_{\nu_x} = \frac{1}{2} [(1-p) \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0]$$

	p	$ar{p}$
NO	$ U_{e3} ^2$	$1 - P_{2e}(E, \cos \theta)$
ΙΟ	$P_{2e}(E,\cos\theta)$	$ U_{e3} ^2$

$$\begin{split} P_{2e}(E,\cos\theta) &= \mathcal{T}_{e\beta} \cdot U_{PMNS,2} \\ \mathcal{T}_{\alpha\beta} &= \mathcal{T}(\overline{P_{det}P_1}) \, \mathcal{T}(\overline{P_1P_2}) \cdot \cdot \cdot \mathcal{T}(\overline{P_MP_{prod}}) \\ \\ & \text{Lisi, Montanino (PRD 56, 1997)} \end{split}$$

18

Earth matter effects

ν_e channel – IO

Take-home message

This project has received funding and support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

The neutrino signal coming from the Supernova neutronization burst, visible only in the ν_{ρ} spectrum, constitutes an important tool to constrain the absolute value of the neutrino mass and it can give a complementary (and independent) measurement to β -decays and cosmology.

Take-home message

Waiting for SN20XXX...

This project has received funding and support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

The neutrino signal coming from the Supernova neutronization burst, visible only in the ν_{ρ} spectrum, constitutes an important tool to constrain the absolute value of the neutrino mass and it can give a complementary (and independent) measurement to β -decays and cosmology.

Backup Supernova parameters uncertainties: luminosity

Kachelriess,

Tomas,

Buras, Janka, Marek, Rampp (PRD 71, 2005)

The neutronization burst results to be a robust, model independent

prediction of the Supernova models.

Very slight variations as a function of progenitor mass (left panel), microphysics of neutrino interactions (middle panel) and equation of state (right panel).

Backup Supernova parameters uncertainties: mean energy

<u>Kachelriess,</u>

Tomas,

Buras, Janka, Marek, Rampp (PRD 71, 2005)

The neutronization burst results to be a robust, model independent prediction of the

Supernova models.

Very slight variations as a function of progenitor mass (left panel), microphysics of neutrino interactions (middle panel) and equation of state (right panel).

Backup **Supernova neutrinos emission: details**

 $\Phi^0_{\nu_{\beta}}(E,t) = \frac{L_{\nu_{\beta}}(t)}{4\pi D^2} \frac{\varphi_{\nu_{\beta}}(E,t)}{\langle E_{\nu_{\beta}}(t) \rangle} \qquad \Phi^0_{\nu_{\mu}}, \Phi^0_{\nu_{\tau}} \equiv \Phi^0_{\nu_{x}}$

 $\varphi_{\nu_{\beta}}(E,t) = \xi_{\beta}(t) \left(\frac{E}{\langle E_{\nu_{\beta}}(t) \rangle}\right)^{\alpha_{\beta}(t)} \left\{\frac{\frac{-[\alpha_{\beta}(t)+1]E}{\langle E_{\nu_{\beta}}(t) \rangle}\right\}$

 $\alpha_{\beta}(t) = \frac{2\langle E_{\nu_{\beta}}(t) \rangle^{2} - \langle E_{\nu_{\beta}}^{2}(t) \rangle}{\langle E_{\nu_{\beta}}^{2}(t) \rangle - \langle E_{\nu_{\beta}}(t) \rangle^{2}}$

Backup **Dependency on SN parameters**

One time-windows: [0, 10] s

 $\langle E_{\nu_{\beta}} \rangle = (1 + f_{\nu_{\beta}}^{1}) \langle E_{\nu_{\beta}} \rangle^{0}$ $\alpha_{\nu_{\beta}} = (1 + f_{\nu_{\beta}}^{2}) \alpha_{\nu_{\beta}}^{0}$

Two time-windows: [0, 0.5] s and [0.5, 10] s

Backup Dependency on SN distance

Likelihood analysis

Pagliaroli, Vissani, Costantini, Ianni (Astropart. Phys. V31, 2009)

- Dataset generation $(\delta t_i, E_i)$ generation by fixing D
- Likelihood construction $L(t_i, m_{\nu}) = \int R(t_i, E) \ G(E) \ dE$ G(E): Gaussian smearing (10% energy resolution) $\chi^2(t_i, m_\nu) = -2\log(L)$
- Sensitivity to m_{μ}

 $\Delta \chi^2(m_{\nu}) = \chi^2(m_{\nu}) - \chi^2_{min}(m_{\nu})$

Lisi, Montanino (PRD 56, 1997)

Backup

Mikheyev-Smirnov-Wolfenstein effect Dighe, Smirnov (PRD 62, 2000)

Adiabatic or partially adiabatic neutrino flavor conversion in medium with varying density

