Topic formerly known as "triangulation"

> J Tseng 1 June 2023 SNvD @ LNGS

Credit: Astro Mike @xRMMike

20th May 2023

Triangulation

- Simple geometric problem: neutrino burst arrives at different times at different detectors
 - Maximum time difference ~40ms
- Very fast pointing back to supernova

NIVERSITY O

- Generally expect not as good as directional events, e.g., electron elastic scatters
- Timescale: Super-Kamiokande pointing in ~3.5min [see Takeda, this conference]
- Redundant over individual detector downtimes

Pointing+

Pointing is not the only useful information we can glean Aim: rapid calculation of observationally relevant quantities Where? What? How? When?

Outline

- Distance
- Burst features
- Triangulation
 - Methods
 - Time series matching
 - Skymap confidence intervals

SNEWS2 calculations: Pointing+

- Multiple pipelines with asynchronously fulfilled dependencies
- Supernova Neutrino Early Warning Pointing Directed Acyclic Graph...

- Sizable fraction of the galaxy obscured by dust
- May change optimal observation strategy

UNIVERSITY OF

- Neutronization burst (v_e) self-limited by electron captures
 - Potential standard candle, stable vs progenitor mass
 - Yield can be used to estimate distance to SN
- 1MT water Cherenkov detector
 - Average 112 electron elastic scattering events at 10kpc
 - 5% uncertainty on distance
- SNO+ and JUNO should also get a sizable number of proton elastic scattering events

Kachelriess et al., PRD71 (2005) 063003

- Anti- v_e yield ratio of (100,150)ms / (0,50)ms related to "compactness"
 - Can also be related to mass \rightarrow similar sensitivity, smaller detectors using IBD

Segerlund et al., arxiv:2101.10624 (2021)

- 2 methods from Segerlund *et al.*, based on N_{50} = events observed in first 50ms
 - Expected signal weighted over initial mass function \rightarrow lower stat unc, larger syst
 - Linear relation between N_{50} and $N_{50}/N_{100\text{-}150}$ $\rightarrow\,$ larger stat unc, lower syst
- Can report individually or (suggested) averaged

Statistical uncertainties for both methods (true distance 10kpc)

Bands include systematic uncertainties for method 1

Burst features

Black hole cut-off

• How abrupt?

JNIVERSITY OF

- Simulations usually don't use full GR
- Stop when approximations fail
- Many simulations also consider only radial neutrino emissions
- Non-radial neutrino trajectories soften cut-off
 - Characteristic √27M time constant from leakage near photosphere of nonrotating BH [Podurets 1964; Ames, Thorne 1968]
 - O(0.1)ms for non-rotating BH
 - Systematic uncertainty with current experiments
 - Longer smearing for extreme rotation
 - Cut-off may encode information about PNS mass and rotation
- Neutrino echoes [Gullen, O'Connor, Wang, JT, ApJ 926 (2022) 2, 212]
 - Scattering of neutrinos off surrounnding material
 - Further softens cut-off, obscures $\sqrt{27M}$ time constant

Sample neutrino trajectory around rotating BH

Wang, JT, O'Connor, Gullen, PRD 104 (2021) 10, 104030

Failed supernovae

- Black hole formation is interesting and better for pointing
 - But can fail to revive shock / explosion
 → may not see in visible spectrum!
- Search for disappearing massive stars

 → failed SN 0.16^{+0.23}-0.12 at 90% CL
 [Neustadt et al 2021, MNRAS, 508, 516]
- Consistent with search in PTF/ZTF surveys over 10 yr, 231 galaxies, 17M [Byrne & Fraser 2022, 2201.12187]
- Aim to calculate confidence level of detecting a feature such as a cut-off

NASA, ESA, and C Kochanek (OSU)

Pointing

Pointing

Uncertainties and bias for 10kpc from 4 different true directions

Further investigation into time series matching

- Improve Δt for pairs of comparable time series, e.g., of IBD events
 - Cross covariance, χ^2 , other metrics
 - Aim to calculate at least a first estimate of uncertainties \rightarrow CL skymap

Cross covariance

- Often used to match lightcurves and spectra with offsets
- Equivalent to χ^2 with uniform uncertainties
 - Zucker (MNRAS 342, 1291 (2003)) wrote analytical expressions for associated uncertainties under these assumptions

$$\mathcal{L} = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{n_j - m_j(\tau)}{\sigma}\right)^2\right]$$

Cross covariance tests

Cross covariance tests

- 10K events at SK location
- 1/3/5/7/9k events at SNO+ location
 - Corresponding SNO+ yield actually ~250 events
- Smaller time bins for cross covariance comparison \rightarrow smaller bias
- Smaller time bins \rightarrow also larger statistical uncertainty
- Happy medium here: 10ms time bins
 - Roughly time scale of most peak-like feature

Poisson likelihood method

- Use maximum likelihood to find lag and estimate uncertainty
- Start with signal only

Poisson likelihood tests (signal only)

Poisson likelihood tests (signal only)

Poisson likelihood (signal only)

Cross covariance (signal only)

Bias patterns appear consistent with different detector pairs

Uncertainty calculation

- Aim to calculate first estimate of uncertainty
 - Fit logL profile with a 4th order polynomial
 - Estimate uncertainty with second derivative at maximum of polynomial
 - Still need to scale up with a factor of $\sqrt{(1+r\delta)}$
 - δ = RMS of deviations of logL profile from polynomial fit
 - r = 0.5 lines up calculated uncertainties with observed RMS
- Can follow up with uncertainty based on MC trials

 More realistic signals: 27M_☉ (LS220) at 10kpc, normal ordering

Super-Kamiokande: 7800 JUNO: 7200 SNO+: 195 IceCube: 1000 (fake!)

 Count pixels with maximum logL over 1000 MC trials

Super-Kamiokande: 7800 JUNO: 7200 SNO+: 195 IceCube: 1000 (fake!)

J Tseng, Triangulation (1 June 2023)

- Effect of different time bin widths
 - Here Poisson likelihood; cross covariance similar

Pointing: result

- Successive improvement as experiment data comes in
 - 1) Burst times \rightarrow rough triangulation
 - 2) Time distributions \rightarrow improved triangulation
 - 3) Experiment pointing using EES \rightarrow likely to dominate in the end
- Aim to report pointing as a skymap of confidence levels
 - Superimpose on candidate stars

Conclusion

- SNEWS2 aims to provide rapid calculation of observationally relevant quantities: direction, distance, and feature detection
- SNEWS2 can accommodate multiple pipelines for complicated dependencies among asynchronous inputs/updates
- Current work includes improving direct calculation of confidence intervals to inform follow-up quickly

- Confidence interval test at target pixel
 - Δt 's with calculated $\sigma_{\Lambda t}$ fed into triangulation module, which returns χ^2 at each pixel
- Plot CL of pixel containing true direction
 - (For some reason I plotted 1-CL)
 - Should be uniform over (0,1) if calculated uncertainties are reasonable

Uncertainty calculation not too far off (with r=0.5)