Supernova Neutrino Pointing or, POTATOES*

Kate Scholberg, Duke University SNvD 2023@LNGS May 31, 2023

*Point Over There At That Old Exploding Star [Credit:E. Kearns]

OUTLINE

- Motivation for pointing with neutrinos
- Methods
 - Anisotropic reactions
 - Water
 - Argon
 - Scintillator
 - Triangulation
 - Oscillation
 - High-energy neutrinos
- Realistic optimization for the future

Why point?

Find the supernova!*

Early light observations are valuable....

We're racing the shock! May have less than a half hour, or even

just minutes

Matthew D. Kistler, W. C. Haxton, and Hasan Yüksel. Tomography of Massive Stars from Core Collapse to Supernova Shock Breakout. ApJ, 778:81, 2013, arXiv:1211.6770.

Want to point with *low latency*

*Also physics reasons, e.g. neutrino energy resolution

But even if it's not prompt, there are still motivations to use neutrinos to see the SN direction...

There may be no bright supernova!

→ narrow down the search for a progenitor, or a "winked out" star

C. Kochanek et al., Ap.J.684:1336-1342,2008

And even if we never find an optical counterpart or progenitor, we need to know the trajectory through the Earth for matter oscillation evaluation

So refined direction information late is better than never...

Furthermore, direction info may enhance *presupernova* sensitivity, to select signal from bg

Presupernova neutrinos: directional sensitivity and prospects for progenitor

identification

Mainak Mukhopadhyay (Arizona State U., Tempe), Cecilia Lunardini (Arizona State U., Tempe), F.X. Timmes (Arizona State U., Tempe and Michigan State U., JINA), Kai Zuber (TU, Dresden (main)) (Apr 4, 2020)

Published in: Astrophys. J. 899 (2020) 2, 153 • e-Print: 2004.02045 [astro-ph.HE]

Orange: LS Blue: LS-Li detector

Significance should improve making use of directional information

Neutrino Pointing Methods

□ Anisotropic neutrino interactions

combined with detector technology that can exploit it, using the burst neutrino signal

□ Triangulation

using inter-detector timing

Oscillation pattern pointing

in high-energy resolution detectors

- □ High-energy (~GeV) neutrino follow-on pointing in directional detectors, using later neutrinos
- □ All of the above!

Neutrino Pointing Methods

□ Anisotropic neutrino interactions

combined with detector technology that can exploit it, using the burst neutrino signal

- Triangulation using inter-detector timing
- Oscillation pattern pointing in high-energy resolution detectors
- □ High-energy (~GeV) neutrino follow-on pointing in directional detectors, using later neutrinos
- □ All of the above!

Supernova-relevant neutrino interactions

	Electrons	Protons	Nuclei
Charged current	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
	[[] √ _e ► ▼e ⁻	γ e^+ γ $\overline{\nu}_e$ n γ	v_e $v_e^{+/-}$ Various possible ejecta and
Neutral current	ν e	Elastic scattering v	$ \nu + A \rightarrow \nu + A^* $ $ \rho = 0 $
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

NC ν -nucleus

- Poorly understood
- Low cross section
- ~Isotropic observables

IBD & v_e CC

- Can be high event rate (e.g. pIBD)
- Poorly understood xscns on nuclei
- In principle, full final-state kinem available, but lepton anisotropy weak (in practice full reco is hard)

Water Cherenkov Detectors

Pointing in Water Cherenkov: Super-K

From Takeda-san's talk at this workshop:

Detailed MC study showed that the direction pointing accuracy is 3-7 degrees at 10 kpc with IBD tagging (Gd 0.03 wt%) among several models and neutrino oscillation assumption.

Pointing to the supernova with LArTPCs

Tracks can be reconstructed, but note direction ambiguity, unlike Cherenkov! ... but can resolve statistically

using bremsstrahlung directionality and multiple scattering

10.25 MeV electron

Pointing to the supernova with DUNE

Work by: James Shen Janina Hekenmüller Josh Queen

* potential for Fermi/GT separation

Channel-tagging (interaction classification) matters

 $c_{eES \rightarrow eES} = 0.86$ and $c_{\nu_eCC \rightarrow eES} = 0.04$

Pointing resolution as a function of channel-tagging assumption

Pointing resolution as a function of statistics

Reasonable pointing does not require extremely clean separation

Scales (as expected) as inverse square of stats

Mild DUNE detector anisotropy

By Joshua Queen

SN direction confidence region map $\frac{1}{75^{\circ}}$

Pointing with Liquid Scintillator

This is hard, as produced photons get quasi-isotropized... BUT, some statistical prospects using IBD kinematics \rightarrow positron energy + reconstructed vertices of e⁺ and n

Prompt directional detection of galactic supernova by combining large liquid scintillator neutrino detectors V. Fischer (IRFU, Saclay) *et al.*. Apr 21, 2015. 25 pp. Published in JCAP 1508 (2015) 032

Needs good statistics!

[maybe can use Cherenkov for eES? See J. Tseng talk]

Neutrino Pointing Methods

Anisotropic neutrino interactions combined with detector technology that can exploit it, using the burst neutrino signal

□ Triangulation

using inter-detector timing

- Oscillation pattern pointing in high-energy resolution detectors
- □ High-energy (~GeV) neutrino follow-on pointing in directional detectors, using later neutrinos
- All of the above!

Triangulation

Can a supernova be located by its neutrinos? John F. Beacom, P. Vogel (Caltech). Nov 1998. 10 pp.

Published in Phys.Rev. D60 (1999) 033007

Conclude that triangulation is not a good prospect ... too low stats, also hard in practice; requires extensive data exchange to account for detector response...

But... things have evolved...

- new, very high stats detectors on the horizon (HK, DUNE, JUNO,)
- good timing (~ms) from IceCube likely possible (and KM3Net?)
- ways to exploit BH formation

Some new(ish) papers:

NOVI

JUNO+DUNE+HK

IC-NOVA 60°

-90

180

Revisiting the Triangulation Method for Pointing to Supernova and Failed Supernova with Neutrinos

T. Mühlbeier, H. Nunokawa (Rio de Janeiro, Pont. U. Catol.), R. Zukanovich Funchal (Sao Paulo U.). Apr 17. 2013. 7 pp. Published in Phys.Rev. D88 (2013) 085010

Neutrino astronomy with supernova neutrinos

Vedran Brdar, Manfred Lindner, Xun-Jie Xu (Heidelberg, Max Planck Inst.). Feb 7, 2018. 17 pp. Published in JCAP 1804 (2018) no.04, 025

Timing the Neutrino Signal of a Galactic Supernova

Rasmus S.L. Hansen (Heidelberg, Max Planck Inst. & Aarhus U.), Manfred Lindner, Oliver Scholer (Heidelberg, Max Planck Inst.). e-Print: arXiv:1904.11461 [hep-ph]

Triangulation Pointing to Core-Collapse Supernovae with Next-Generation

Neutrino Detectors

N.B. Linzer (Duke U. (main)), K. Scholberg (Duke U. (main)) (Sep 7, 2019) Published in: *Phys.Rev.D* 100 (2019) 10, 103005 • e-Print: 1909.03151 [astro-ph.IM]

....and there may be strategies for fast response!

See Jeff Tseng's talk

Neutrino Pointing Methods

- Anisotropic neutrino interactions combined with detector technology that can exploit it, using the burst neutrino signal
- Triangulation using inter-detector timing
- Oscillation pattern pointing in high-energy resolution detectors
- □ High-energy (~GeV) neutrino follow-on pointing in directional detectors, using later neutrinos
- All of the above!

A different approach: use the matter oscillation energy spectrum to

find the pathlength L traveled in the Earth (assume oscillation parameters well known)

Obtaining supernova directional information using the neutrino matter oscillation pattern Kate Scholberg (Duke U.), Armin Burgmeier (Karlsruhe U.), Roger Wendell (Duke U.). Oct 2009. 11 pp. Published in Phys.Rev. D81 (2010) 043007

If you can determine the pathlength traveled in the Earth, you know the supernova will be found on a *ring on the sky*

Method requires very good energy resolution (scintillator) and large statistics

[Caveat: collective oscillations could interfere]

Peak in power
 spectrum vs
 L for 500,000
 simulated SNae,
 60,000 events
 each (perfect energy resolution)
 → measure k_{peak} to find allowed L values;
 peak height info also usable

Example skymaps from oscillation pointing

One detector

Perfect energy resolution 60,000 neutrino events SN at dec=-60°, RA=20^h, 0:00 Finland

One detector

Scint energy resolution 60,000 neutrino events SN at dec=-60°, RA=20^h, 0:00 Finland

One scintillator detector + IceCube (assume ~ 1 ms timing) oscillation: red timing: dark

It would be interesting to redo this study w/JUNO, latest assumptions...

Neutrino Pointing Methods

Anisotropic neutrino interactions combined with detector technology that can exploit it, using the burst neutrino signal

- Triangulation using inter-detector timing
- Oscillation pattern pointing in high-energy resolution detectors
- High-energy (~GeV) neutrino follow-on pointing in directional detectors, using later neutrinos
 All of the above!

One more: *high energy neutrino events,* GeV-TeV+ neutrinos, produced in the

supernova explosion

First pointed out in:

Supernova pointing with low-energy and high-energy neutrino detectors R. Tomas, D. Semikoz, G.G. Raffelt, M. Kachelriess, A.S. Dighe (Munich, Max Planck Inst.). Jul 2003. 12 pp. Published in Phys.Rev. D68 (2003) 093013

but this reference was pessimistic on the timescale... >12 hours, up to years

But some recent work predicts earlier fluxes.. might lose the shock race, but still reasonably early Advantage: **precision pointing** (<~ deg) at high energy, both from physics (v-charged particle correlation) and detectors (IceCube, maybe DUNE?)

New Prospects for Detecting High-Energy Neutrinos from Nearby Supernovae

Kohta Murase (Penn State U. & Penn State U., Astron. Astrophys. & Kyoto U., Yukawa Inst., Kyoto). May 12, 2017. 1 pp. Published in Phys.Rev. D97 (2018) no.8, 081301

Prospects for Extending the Core-collapse Supernova Detection Horizon Using

High-energy Neutrinos

Nora Valtonen-Mattila (Uppsala U.), Erin O'Sullivan (Uppsala U.) (Jun 1, 2022)

Published in: Astrophys.J. 945 (2023) 2, 98 • e-Print: 2206.00450 [astro-ph.HE]

Possibly good things come to those who wait (a bit)... very important to keep detectors running after the burst

Summary comments on the methods

Method	Comments
Anisotropic interactions	 ES very good in in SK several ° at 10 kpc Will be even better in SK-Gd, HK DUNE also excellent Some info from scintillator via IBD (eES?)
Triangulation	 Some good, <i>fast</i> info from next generation, especially with IceCube
Oscillation pattern	 Hard: needs good energy resolution & stats But scintillator detectors could perhaps add useful information?
High-energy events	 May not be too late for the party <hour in="" li="" scale="" scenarios<="" some=""> Excellent (possibly sub-deg) intrinsic pointing </hour>

Neutrino Pointing Methods

- Anisotropic neutrino interactions combined with detector technology that can exploit it, using the burst neutrino signal
- Triangulation using inter-detector timing
- Oscillation pattern pointing in high-energy resolution detectors
- □ High-energy (~GeV) neutrino follow-on pointing in directional detectors, using later neutrinos
- □ All of the above!

We should consider **staged methods**... what can be done fast? Refined later? → develop SNEWS strategy for **continual updates as information flows in**

Summary

Directional information is valuable

- Need it fast!
- But late may be better than never

Multiple strategies

- Anisotropic information in single detectors probably best
- But other methods may improve the response, may be faster

Need to develop strategy:

- Staged approach may be best... how to share, incorporate refined information on different timescales?

