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DSNB in context

~kpc ~Mpc ~Gpc

Nn ~ 1 : MINI-BURST

SN rate ~ 1 /yr

Nn << 1 : DIFFUSE

SN rate ~ 108 /yr

From Beacom (2011)
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Nn >> 1 : BURST

SN rate ~ 0.01 /yr

Features:
• Rich multi-messenger data
• Precision on 1 progenitor
• Surprises?

Features:
• Many progenitors, population studies
• Cosmological baseline
• Guaranteed signal
• Surprises?



DSNB: ingredients
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Neutrino detector capabilities Rate of massive 
star core collapse

Time-integrated 
neutrino emission

Super-K (2023)



DSNB challenges
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1. What is the true core-collapse rate?

2. What is the time-integrated neutrino emission?
• For exploding Fe core collapses
• Diversity in neutrino emissions
• Other effects

3. Rates & detections (backgrounds)



Cosmic core-collapse supernova rate
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Direct measurements
Ø Important redshift range 

is observed by surveys

Ø Uncertainty: factor ~3
• Different survey 

strategy, sample size, 
dust correction, 
supernova luminosity 
function

But: supernova rate only 
gives the successful core 
collapse rate!

(1+z)3.3

Updated from Horiuchi et al (2011)
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Cosmic star-formation rate
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Hopkins & Beacom (2006)    Madau & Dickinson (2014) 

Proxy for core-collapse rate
Ø Since massive stars’ lives are cosmologically short
Ø Measured by many groups, many wavebands, many data sets

• Important redshift range (z<1) directly observed
Ø Uncertainty: factor ~2 (z<1)

• Dust correction, sample selection, initial mass function

UV
IR
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Fits versus data
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Fits are handy
Standard practice has been to 
use functional fits to data with 
parameter estimation & errors

Data driven
Large dataset allows more direct 
estimates of rates & errors in redshift 
space

Horiuchi et al (2009), following Hopkins & Beacom 
(2006) and Yuksel et al (2008)

Ekanger et al (in prep)

PRELIMINARY



Multiple cross checks
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Star formation Cosmic stellar density 

Ia supernova rate

Extragalactic background light

Core-collapse supernova rate

Cosmic metallicity

Time 
integrated

8

Cross checks: towards consensus, which gives us additional confidence



Cross checks
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Madau & Dickinson (2014); see also Wilkins et al (2008)

Star formation

Cosmic core-collapse supernova rate
    *Sensitive to dust

Cosmic stellar density
    *Sensitive to initial mass function 

9

Graur et al (2015); see also Horiuchi et al (2011), 
Mathews et al (2014)



Cross checks
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Star formation

Cosmic Ia supernova rate
    *Sensitive to delay-time distribution

Extragalactic background light
    *Measurement systematics

10
Horiuchi & Beacom (2010)    Horiuchi et al (2009)

Predicted: 78 nW m-2 sr-1 



First take away
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Are we confident core collapses 
are occurring?    Yes

How certain are we about the 
rate?  To factor ~2

Plus, orders of magnitude more core-
collapse supernovae expected by LSST 
(2025~).

Lien & Fields (2009)
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DSNB challenges
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1. What is the true core-collapse rate?

2. What is the time-integrated neutrino emission?
• For exploding Fe core collapses
• Diversity in neutrino emissions
• Other effects

3. Rates & detections (backgrounds)



Not standard candles

Shunsaku Horiuchi O’Connor & Ott (2013)

Look to simulations for guidance: neutrino emission reflects the progenitor
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Higher x 

Lower x

⇠M =
M/M�

R(Mbary = M)/1000 km
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Neutrino emission out to cooling phase
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Challenge is long-term (~10 sec) simulations for multiple progenitors
• Multi-D are computationally expensive, large sets becoming available

Bollig et al (2021)Nagakura et al (2021)



Neutrino emission out to cooling phase
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Kresse et al (2021)

Challenge is long-term (~10 sec) simulations for multiple progenitors
• Multi-D are computationally expensive, large sets becoming available
• With 1D “calibrated central neutrino engines”



Neutrino emission out to cooling phase
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Challenge is long-term (~10 sec) simulations for multiple progenitors
• Multi-D are computationally expensive, large sets becoming available
• With 1D “calibrated central neutrino engines”
• Simple estimates for the cooling phase

Li et al (2020)

Split into two phases:

1. Early: approximately until 
shock revival, studied by core-
collapse hydo sims

2. Late: post shock revival, as 
central PNS cools by neutrino 
emission, make simple models

Total = early + late phases



Late phase: parameterized
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Simple late estimate
Describe the time-integrated late phase emission using two parameters:
1. Final PNS mass
2. Shock revival time

Quantify with suites of 1D 
long-term simulations Nakazato et al (2012), Hudepohl et al (2014) 

Ekanger et al (2022)



Late phase: analytic model
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Polytrope PNS & neutrino diffusion: treatment has model parameters 
• Final PNS mass & radius 
• Structure parameter (g), opacity boost factor (b)

Best confidence 
when done over 
several seconds

Tune (g,b) to 
FORNAX post-
shock revival 
part

Ekanger et al (2022)

Suwa et al (2021)

Burrows et al (2019)
Nagakura et al (2021)



Estimate the DSNB
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Total = early + late phases
1. Early: suites of FORNAX 

simulations (2D, 3D) 
2. Late: estimate using final PNS 

properties
Dependences on progenitor set, CC 
simulation, late-time treatment, … 

Burrows et al (2019)

Predicted DSNB



Diversity in neutrino emission
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Nakazato et al (2015)

See also: Lunardini (2009), Lien et al (2010), Yang & Lunardini (2011), Keehnn & Lunardini (2012), Nakazato (2013), 
Mathews et al (2014), Yuksel & Kistler (2015), Hidaka et al (2016), Priya & Lunardini (2017), Moller et al (2018), 
Horiuchi et al (2018)

Kresse et al (2021)

20

Shen LS220

(normal hierarchy)

Systematically different contributions can occur
• Electron-capture in ONeMg core: how frequent?
• Black hole formation: depends on progenitor, EOS, frequency



BH: neutrino emission & frequency

Shunsaku Horiuchi 21

Kresse et al (2021)

1) What are the neutrino emissions? Vary MNS,b (over 2.3–3.5Msun)
Z9.6 & W18

ß Varies by 
factor ~2—5

ß Varies by 
~4 MeV

Z9.6 & W18

Kresse et al (2021)

Predicted DSNB

2) How frequently do they occur?

Progenitor, calibration dependent



Finding collapse to black holes
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Monitor ~27 galaxies
à Survey ~106 red supergiants 
à Expect ~1 core collapse /yr
à In 10 years, sensitive to 20 – 30% failed 

fraction at 90% CL Kochanek et al. (2008)

Look for disappearance of stars

22



Looking for disappearing stars
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In 11 years survey
ü 9 luminous CC supernovae    
ü 2 implosion candidates

• NGC6946-BH1: SED well fit 
by ~25 Msun RSG

• M101-OC1: follow-up 
ongoing

Neustadt et al (2021) 

Also: Gerke et al(2015), Adams et al ( 2017), 
Reynolds et al (2016)

R-band

V-band



Missing red supergiants
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pre-image by HST

SN 2008bk

D ~ 4 Mpc

Progenitors:
Progenitors of nearby  
Type IIP SNe in pre-images

But none have mass 
above ~20Msun
à Could be BH formation  

(but many other ideas 
explored)

Expected distribution

if all stars exploded

Smartt, STScI Spring Symposium (2019)
24

Expected 
distribution 
with a 
mass 
cutoff

35 SNe (20 detections, 
15 upper limits)

Horiuchi et al (2014), Kochanek (2014), 
Davies et al (2013), Walmswell & 
Eldridge (2012), Beasor & Davies (2016)



Select other effects
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Horiuchi et al (2021)

Binaries: are common and can 
enhance progenitor numbers

Sana et al (2012)

Non-Universal IMF: may be 
environmentally dependent

Variable BH fraction: 
may be more common 
at high redshifts

Zieger et al (2022), Ashida et al (2023)

Various BSM physics

Eg Yuksel & Kistler (2014)

Eg de Gouvea et al (2019)



Second take away
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Are we confident core 
collapses are emitting 
neutrinos?  

Yes   

Are we certain about the time-integrated 
neutrino signal?

Still many dependences to study, eg, 
progenitors

CC & explosion details
cooling phase treatments

BH contribution
Other effects…

These are what we want 
to test with the DSNB



DSNB challenges
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1. What is the true core-collapse rate?

2. What is the time-integrated neutrino emission?
• For exploding Fe core collapses
• Diversity in neutrino emissions
• Other effects

3. Rates & detections (backgrounds)



DSNB: predicted rates
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Setup
• Binned star formation rate data
• FORNAX 2D hydro + simple late-phase
• Salpeter IMF
• Normal mass ordering
• SuperK + Gd

R = 2.5       /yr+0.27
-0.27

R = 1.1       /yr+0.13
-0.13

Analytic

Correlation

Ekanger  et al (in prep)

PRELIMINARY

+ adding more



PyDSNB
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Publicly available code built on 
SNEWPY, to model DSNB fluxes & 
events: coming soon!

Choice inputs
• Hydro model
• Late-time estimate method
• Initial mass function
• Failed (implosion) fraction
• BH model 
• Neutrino mass hierarchy

Ando, Ekanger, Horiuchi, Koshio (in prep)

Hydro models

Late-phase treatments

Inverted:

Normal:

PRELIMINARY

PRELIMINARY



DSNB search limits
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Existing limits are reaching 
into theory predictions

Predictions by pyDSNB:
• Three spectra

1. 4.1 MeV Thermal
2. Nakazato 1D
3. Fornax 2D 

• BH Fraction 23.6%
• Nakazato 30M Shen
• Kroupa IMF

Ando, Ekanger, Horiuchi, Koshio (in prep)

PRELIMINARY



Relevant backgrounds
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1. Neutrinos
• Reactor neutrinos
• Atmospheric neutrinos

2. Non-neutrinos
• Invisible muon decays

• CR µ spallation 
products

• Atmospheric neutrino 
related

Beacom & Vagins (2004)



SK-Gd: world’s best DSNB detector
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Beacom & Vagins (2004), SK 2021 (arXiv:2109.00360)

⌫̄e + p ! e+ + n

Gadolinium tags IBD
Proposed in 2003, after many R&D & tests 
(EGADS), Super-K was drained in 2018, 
refurbished, and started adding Gd in 2020

Evaluating 
Gadolinium’s 
Action on 
Detector 
Systems 

(mostly lost)
(mostly visible)



SK-VI: successful Gd performance
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SuperK (Harada et al 2023)

Already comparable with 
~10 years of pre-Gd result!
SuperK most recently ran 
with ~0.01% Gd by mass
à ~50% captures on Gd
à Neutron tag efficiency 

approx doubled cf pre-Gd

Gd limits (552.2 days)
Past limits (2970 days)

Final efficiency 
~35.6%
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SK-VII: discovery potential

Li, Vagins, Wurm (2022)

Prospect: SKGd + JUNO reaches  ~5s  for central predictions by ~2030

34

Gd by mass percentage

Now running (SK-VII) with 
~0.03% Gd by mass 
à ~75% captures on Gd
à signal : bkg ~ 2



Conclusions
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The diffuse supernova neutrino background is guaranteed
ü Core collapse occur frequently     

(measurements + cross checks) 
ü Core collapses emit neutrinos       

(but many details to study)

Interesting inputs: time-integrated neutrino emission, black 
hole contribution, EOS, binary effects, BSM physics, so on. 
Testing these will need a well-measured core-collapse rate, 
which is improving.

We have exciting sensitivity with the Gadolinium upgrade at 
Super-Kamiokande

35

Thank you!



BACKUP
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Redshift range
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LSST operations 2025~
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Importance of binaries
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Merger case

More massive progenitor

SN

èNumber of progenitors changed
èMasses of progenitors changed

The majority of massive stars evolve in binaries

For core-collapse supernovae: 

e.g., Sana et al (2012)

Non-merger

Single Double

SN SN SN

Visuals: thanks to T. Kinugawa 39



Population synthesis results
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Results of binary population syntheses:

Horiuchi et al (2021)

Boost due 
to mergers: 
~25% more 
progenitors

Boost due to 
mergers and 
mass transfers

40



Population synthesis
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Effect 1: binary effect increases number of supernova progenitors

The increase depends on the treatment of post-merger rotation
• In our fiducial model, ~25% increase
• Up to +75%

Horiuchi et al (2021)

41



DSNB searches
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SuperK (2023)Currently background dominated 


