International Conference on Supernova Neutrino Detection Gran Sasso National Laboratory, May 31st 2023

Diffuse supernova neutrino background

Image credit: NASA/ESA

DSNB in context

Features:

- Rich multi-messenger data
- Precision on 1 progenitor
- Surprises?

Shunsaku Horiuchi

Features:

- Many progenitors, population studies
- Cosmological baseline
- Guaranteed signal
- Surprises?

DSNB: ingredients

DSNB challenges

$$R = N_t \int dE \,\sigma_{\rm IBD} \int dz \, c \frac{dN}{dE'} (1+z) R_{CC}(z) \left| \frac{dt}{dz} \right|$$

1. What is the true core-collapse rate?

2. What is the time-integrated neutrino emission?

- For exploding Fe core collapses
- Diversity in neutrino emissions
- Other effects

3. Rates & detections (backgrounds)

Cosmic core-collapse supernova rate

Direct measurements

- Important redshift range is observed by surveys
- Uncertainty: factor ~3
 - Different survey strategy, sample size, dust correction, supernova luminosity function

But: supernova rate only gives the successful core collapse rate!

Updated from Horiuchi et al (2011)

Cosmic star-formation rate

Proxy for core-collapse rate

- Since massive stars' lives are cosmologically short
- Measured by many groups, many wavebands, many data sets
 - Important redshift range (z<1) directly observed
- Uncertainty: factor ~2 (z<1)</p>
 - Dust correction, sample selection, initial mass function

Hopkins & Beacom (2006) Madau & Dickinson (2014)

Fits versus data

Fits are handy

Standard practice has been to use functional fits to data with parameter estimation & errors

Data driven

Large dataset allows more direct estimates of rates & errors in redshift space

Horiuchi et al (2009), following Hopkins & Beacom (2006) and Yuksel et al (2008)

Multiple cross checks

Cross checks: towards consensus, which gives us additional confidence

Cross checks

Graur et al (2015); see also Horiuchi et al (2011), Shunsaku Horiuchi Mathews et al (2014)

9

Cross checks

First take away

Are we confident core collapses are occurring? Yes

How certain are we about the rate? To factor ~2

Plus, orders of magnitude more corecollapse supernovae expected by LSST (2025~).

Lien & Fields (2009)

DSNB challenges

$$R = N_t \int dE \,\sigma_{\rm IBD} \int dz \, \left(\frac{dN}{dE'} (1+z) R_{CC}(z) \right) \left| \frac{dt}{dz} \right|$$

1. What is the true core-collapse rate?

2. What is the time-integrated neutrino emission?

- For exploding Fe core collapses
- Diversity in neutrino emissions
- Other effects

3. Rates & detections (backgrounds)

Not standard candles

Look to simulations for guidance: neutrino emission reflects the progenitor

Shunsaku Horiuchi

Neutrino emission out to cooling phase

Challenge is long-term (~10 sec) simulations for multiple progenitors

• Multi-D are computationally expensive, large sets becoming available

Neutrino emission out to cooling phase

Challenge is long-term (~10 sec) simulations for multiple progenitors

- Multi-D are computationally expensive, large sets becoming available
- With 1D "calibrated central neutrino engines"

Kresse et al (2021)

Neutrino emission out to cooling phase

Challenge is long-term (~10 sec) simulations for multiple progenitors

- Multi-D are computationally expensive, large sets becoming available
- With 1D "calibrated central neutrino engines"
- Simple estimates for the cooling phase

Split into two phases:

- 1. <u>Early</u>: approximately until shock revival, studied by corecollapse hydo sims
- 2. <u>Late</u>: post shock revival, as central PNS cools by neutrino emission, make simple models

Total = early + late phases

Late phase: parameterized

Simple late estimate

Describe the time-integrated late phase emission using two parameters:

- 1. Final PNS mass
- 2. Shock revival time

$$\operatorname{Log}_{10}(E_i) = \alpha_i^{(E)} M_{\operatorname{fin}} + \beta_i^{(E)} t_{\operatorname{rev}} + \gamma_i^{(E)},$$

$$\epsilon_i = \alpha_i^{(\epsilon)} M_{\operatorname{fin}} + \beta_i^{(\epsilon)} t_{\operatorname{rev}} + \gamma_i^{(\epsilon)},$$

Quantify with suites of 1D long-term simulations

Ekanger et al (2022)

Late phase: analytic model

Polytrope PNS & neutrino diffusion: treatment has model parameters

- Final PNS mass & radius
- Structure parameter (g), opacity boost factor (β)

Suwa et al (2021)

Estimate the DSNB

Total = early + late phases

- 1. <u>Early</u>: suites of *FORNAX* simulations (2D, 3D)
- 2. <u>Late</u>: estimate using final PNS properties

Dependences on progenitor set, CC simulation, late-time treatment, ...

Burrows et al (2019)

Diversity in neutrino emission

Systematically different contributions can occur

- Electron-capture in ONeMg core: how frequent?
- Black hole formation: depends on progenitor, EOS, frequency

Kresse et al (2021)

Nakazato et al (2015)

See also: Lunardini (2009), Lien et al (2010), Yang & Lunardini (2011), Keehnn & Lunardini (2012), Nakazato (2013), Mathews et al (2014), Yuksel & Kistler (2015), Hidaka et al (2016), Priya & Lunardini (2017), Moller et al (2018), Horiuchi et al (2018)

BH: neutrino emission & frequency

1) What are the neutrino emissions? Vary M_{NS,b} (over 2.3–3.5Msun)

10

20

E [MeV]

30

Progenitor, calibration dependent

Shunsaku Horiuchi

40

Finding collapse to black holes

Kochanek et al. (2008)

Look for <u>disappearance</u> of stars

Monitor ~27 galaxies

- \rightarrow Survey ~10⁶ red supergiants
- \rightarrow Expect ~1 core collapse /yr
- \rightarrow In 10 years, sensitive to 20 30% failed

fraction at 90% CL

Looking for disappearing stars

In 11 years survey

- ✓ 9 luminous CC supernovae
- 2 implosion candidates
 - NGC6946-BH1: SED well fit by ~25 Msun RSG
 - M101-OC1: follow-up ongoing

Neustadt et al (2021)

Also: Gerke et al(2015), Adams et al (2017), Reynolds et al (2016)

Missing red supergiants

Progenitors:

Progenitors of nearby Type IIP SNe in pre-images

pre-image by HST

But none have mass above ~20Msun

→ Could be BH formation (but many other ideas explored)

Horiuchi et al (2014), Kochanek (2014), Davies et al (2013), Walmswell & Eldridge (2012), Beasor & Davies (2016) Shunsaku Horiuchi

Smartt, STScI Spring Symposium (2019)

Select other effects

Binaries: are common and can enhance progenitor numbers

Non-Universal IMF: may be environmentally dependent

z

Shunsaku Horiuchi

Second take away

Are we confident core collapses are emitting neutrinos? Yes

Are we certain about the time-integrated neutrino signal? Still many dependences to study, eg, progenitors CC & explosion details cooling phase treatments BH contribution Other effects...

These are what we want to test with the DSNB

DSNB challenges

$$R = N_t \int dE \,\sigma_{\rm IBD} \int dz \, c \frac{dN}{dE'} (1+z) R_{CC}(z) \left| \frac{dt}{dz} \right|$$

- 1. What is the true core-collapse rate?
- 2. What is the time-integrated neutrino emission?
 - For exploding Fe core collapses
 - Diversity in neutrino emissions
 - Other effects

3. Rates & detections (backgrounds)

DSNB: predicted rates

Setup

28

Publicly available code built on SNEWPY, to model DSNB fluxes & events: *coming soon!*

Choice inputs

- Hydro model
- Late-time estimate method
- Initial mass function
- Failed (implosion) fraction
- BH model
- Neutrino mass hierarchy

Normal:

$$F_{\bar{\nu}_{\mathrm{e}}}^{\mathrm{obs}} \simeq \cos^2 \theta_{12} F_{\bar{\nu}_{\mathrm{e}}} + \sin^2 \theta_{12} F_{\nu_x}$$

Inverted:

$$F_{\bar{\nu}_{\rm e}}^{\rm obs} \simeq F_{\nu_x}$$

Ando, Ekanger, Horiuchi, Koshio (in prep) Shunsaku Horiuchi

DSNB search limits

Existing limits are reaching into theory predictions

Predictions by *pyDSNB*:

- Three spectra
 - 1. 4.1 MeV Thermal
 - 2. Nakazato 1D
 - 3. Fornax 2D
- BH Fraction 23.6%
- Nakazato 30M Shen
- Kroupa IMF

Ando, Ekanger, Horiuchi, Koshio (in prep) Shunsaku Horiuchi

Relevant backgrounds

1. Neutrinos

- Reactor neutrinos
- Atmospheric neutrinos

2. Non-neutrinos

• Invisible muon decays

invisible (<120 MeV/c)

- CR μ spallation products
- Atmospheric neutrino related

Beacom & Vagins (2004)

SK-Gd: world's best DSNB detector

Gadolinium tags IBD

Proposed in 2003, after many R&D & tests (EGADS), Super-K was drained in 2018, refurbished, and started adding Gd in 2020

$$\bar{\nu}_e + p \to e^+ + n$$

Beacom & Vagins (2004), SK 2021 (arXiv:2109.00360)

SK-VI: successful Gd performance

Already comparable with ~10 years of pre-Gd result! SuperK most recently ran with ~0.01% Gd by mass \rightarrow ~50% captures on Gd

→ Neutron tag efficiency approx doubled cf pre-Gd

SuperK (Harada et al 2023)

SK-VII: discovery potential

Prospect: SKGd + JUNO reaches $\sim 5\sigma$ for central predictions by ~ 2030

Conclusions

The diffuse supernova neutrino background is guaranteed

- Core collapse occur frequently (measurements + cross checks)
- Core collapses emit neutrinos (but many details to study)

Interesting inputs: time-integrated neutrino emission, black hole contribution, EOS, binary effects, BSM physics, so on. Testing these will need a well-measured core-collapse rate, which is improving.

We have <u>exciting sensitivity</u> with the Gadolinium upgrade at Super-Kamiokande

BACKUP

Shunsaku Horiuchi

Redshift range

LSST operations 2025~

Importance of binaries

Population synthesis results

Results of binary population syntheses:

Shunsaku Horiuchi

Population synthesis

Effect 1: binary effect increases number of supernova progenitors

	Merger		Non-merger		Ratio wrt
		(Rotation)	Double	Single	no binary, f_b
No binary evolution	0	0	122,600	171,002	1
Binary $\alpha \lambda = 0.1$ Extrapolated	155,235	315,722	75,723	109,276	1.76
Binary $\alpha \lambda = 0.1$ Fiducial	155,235	50,102	75,723	109,276	1.24
Binary $\alpha \lambda = 0.1$ No rotation	155,235	0	75,723	109,276	1.00
Binary $\alpha \lambda = 1$ Extrapolated	140,467	196,983	83,070	131,679	1.53
Binary $\alpha \lambda = 1$ Fiducial	140,467	39,869	83,070	131,679	1.24
Binary $\alpha \lambda = 1$ No rotation	140,467	0	83,070	131,679	1.05

Horiuchi et al (2021)

The increase depends on the treatment of post-merger rotation

- In our fiducial model, ~25% increase
- Up to +75%

DSNB searches

Currently background dominated

SuperK (2023)

