RES-NOVA: A revolutionary archaeological Pb observatory for astrophysical neutrino sources

Luca Pattavina

INFN - Laboratori Nazionali del Gran Sasso Technical University of Munich

Technische Universität München

European Research Council Established by the European Commissior

29.05.2023 | SNvD 2023 @ LNGS

RES-NOVA IN ONE SLIDE

Detecting SuperNova neutrinos

1 SN / 50 years

using an innovative technology for <u>high-statistic</u> and <u>flavor independent</u> studies

Survey 90% of SN in Milky Way

SUPERNOVAE: COSMIC FIREWORKS

Supernovae (SN): high-energy **explosions of massive stars**

Almost total star binding energy converted into <u>all flavor-neutrinos</u> but also **GW** and **EM** radiation

Neutrinos: direct probes and messengers of SNe hidden dynamics

Rare event: 1 observation with underground instrumentation (1987)

Credit: NASA/ESA, The Hubble Key Project Team and The High-Z Supernova Search Team

NEUTRINOS ARE EMITTED AT ALL TIMES UNIQUE NEUTRINO SIGNATURE

Nota Bene: neutrino flavor oscillations not included

Neutrino transport simulation of a Core-Collapse SN

A. Mirizzi et al., Riv. Nuovo Cim.39, 1 (2016) [ArXiv:1508.00785]

MPA Supernova Archive: https://wwwmpa.mpa-garching.mpg.de/ccsnarchive

SUPERNOVA NEUTRINO SIGNAL

WHAT IS THE AVERAGE NEUTRIND ENERGY?

 v_x is the most **intense** component of the flux

Current SN neutrino detectors are mostly sensitive to anti-v_e/v_e

 v_x is the most **energetic** component of the flux

HOW DO WE DETECT SN NEUTRINDS NOWADAYS?

From 1987 to nowadays

6

HOW DO WE DETECT SN NEUTRINDS NOWADAYS?

COHERENT Coll., *Science* 357 (2017) 6356, 1123

> High interaction cross-section

> Equally sensitive to all v-flavors

> High interaction cross-section

* Spin 0 interaction

> Equally sensitive to all v-flavors

$$F^2(q^2) E_{\nu}^2 Q_W^2$$

Nuclear Form Neutrino factor energy

$$Q_W = N - Z(1 - 4\sin^2)$$

Weak nuclear charge

- > High interaction cross-section

cross-section

> Equally sensitive to all v-flavors

 $\sigma_{CE
u NS} \propto N^2$ Neutron number

10

Pb ideal target

Highest neutron number Highest nuclear stability

Pb ideal target

Highest neutron number Highest nuclear stability

ALL NEUTRIND FLAVORS ARE DETECTED

Pb ideal target

Highest neutron number Highest nuclear stability

13

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors **Target material** PbWO₄ from archaeological-Pb

RES-NOVA DETECTOR TECHNOLOGY ADVANCED CRYDGENIC DETECTORS Cryogenic calorimeters made from Pb

- 1 Wide choice of compounds
- 1 Easily scalable technology (modularity)
- ↑ Excellent energy resolution/threshold
- Fully active detectors > low bkg

RES-NOVA DETECTOR TECHNOLOGY ADVANCED CRYDGENIC DETECTORS **Cryogenic calorimeters made from Pb**

- 1 Wide choice of compounds
- 1 Easily scalable technology (modularity)
- 1 Excellent energy resolution/threshold
- 1 Particle ID for scintillating cryogenic detectors
- Fully active detectors Iow bkg

RES-NOVA DETECTOR TECHNOLOGY ADVANCED CRYOGENIC DETECTORS Cryogenic calorimeters made from Pb

Cryogenic measurement of commercial PbWO₄

J.W. Beeman, LP et al., Eur. Phys. J. A 49, 50 (2013)

RES-NOVA DETECTOR TECHNOLOGY ADVANCED CRYDGENIC DETECTORS Cryogenic calorimeters made from Pb

High-radiopurity crystal

PbWO₄ crystals

Low-background neutrinoless double-beta decay technology

Thermometer at mK Transition Edge Sensor Low-threshold Dark Matter technology

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors

Target material PbWO₄ from archaeological-Pb

CRYDGENIC DETECTORS BUILT FROM ARCHAEOLOGICAL PB

Archaeological Roman Pb:

- **†** from underwater shipwreck
- \star 2000 years old

Archaeo-Pb cryogenic detector

High radiopurity: < 1 mBq/kg

x10⁴ better than commercial low-background Pb

L. Pattavina et al., Eur. Phys. J. A 55, 127 (2019)

Several tons of Archaeo-Pb @ INFN

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors **Target material** PbWO₄ from archaeological-Pb

RES-NOVA GIVES UNIQUE INSIGHTS INTO SNE INNOVATIVE EXPERIMENTAL APPROACH

Galactic SN neutrino signal:

Water Cherenkov (SuperK): 0.2 ev./m³ Liquid Scintillator (SNO+): 0.4 ev./m³ <u>RES-NOVA: ~200 ev./m³</u>

Detection channel

Coherent neutrinonucleus scattering

Technology

Cryogenic detectors

Target material PbWO₄ from archaeological-Pb

What can we learn?

Core-collapse physics studies

Characterization of SN remnants

Neutrino mass properties

Multi-messenger Astronomy

NEUTRIND DBSERVATORY AT THE CM-SCALE AN ARRAY OF PBWO4 CRYSTALS

Size: Threshold: SN @ 10 kpc:	RN-demo @ LNGS (30 cm) ³ 1 keV ~10 counts	
Size: Threshold: SN @ 10 kpc:	RN-1 (60 cm) ³ 1 keV ~50 counts	
Size: Threshold: SN @ 10 kpc:	RN-2 (140 cm) ³ 1 keV ~900 counts	

SN ENERGY RECONSTRUCTION IN RES-NOVA

Reconstruction of A_T and <E> by likelihood analysis

Precision in total SN energy reconstruction

 v_x/anti-v_x
 v_e/anti-v_e

 RN-I
 30%

 RN-2
 8%

 RN-3
 4%

L. Pattavina et al., Phys. Rev. D 102, 063001 (2020) A. Gallo Rosso et al., JCAP 04 (2018) 040

IS PB THE BEST TARGET FOR SN NEUTRINOS LET'S HAVE A LOOK AT THE PERIODIC TABLE

IS PB THE BEST TARGET FOR SN NEUTRINOS

Detector **counting rate** for E_{th} = 1 keV

HOW LOW SHOULD THE THRESHOLD BE ?

RES-NOVA DETECTS SN NEUTRINOS

L. Pattavina et al., *Phys. Rev. D* 102, 063001 (2020)

RES-NOVA DETECTS SN NEUTRINOS

31

L. Pattavina et al., *Phys. Rev. D* 102, 063001 (2020)

RES-NOVA Group of Interest, *Eur. Phys. J. C* 82, 692 (2022)

N. Ferreiro, L. Pattavina et al., J. Low Temp. Phys. 11, 184 (2022)

RES-NOVA PROOFS OF PRINCIPLE

ACHIEVEMENT OF LOW THRESHOLD AND LOW BACKGROUND

Nuclear recoil threshold – 300 eV (PbWO₄ – 20 g)

RES-NOVA BACKGROUND MODEL

Component	Source	Activity	
	Isotope	$[\mathrm{Bq/kg}]~(\mathrm{[Bq/cm^2]})$	
PbWO ₄ crystals	232 Th	$<2.3 imes10^{-4}$	[50]
	$^{238}\mathrm{U}$	$< 7.0 imes 10^{-5}$	[50]
	210 Pb	$<7.1\times10^{-4}$	[36]
Cu structure	232 Th	$< 2.1 \times 10^{-6}$	[35]
	^{238}U	$< 1.2 \times 10^{-5}$	[35]
	210 Pb	$< 2.2 imes 10^{-5}$	[35]
Cu surface	$^{232}\mathrm{Th}$ - $10~\mu\mathrm{m}$	$(5.0 \pm 1.7) \times 10^{-9}$	[35]
	$^{238}\mathrm{U}$ - $10~\mathrm{\mu m}$	$(1.4 \pm 0.2) imes 10^{-8}$	[35]
	$^{210}\mathrm{Pb}$ - $10~\mathrm{\mu m}$	$< 1.9 imes 10^{-8}$	[35]
	$^{210}\mathrm{Pb}$ - $0.1~\mathrm{\mu m}$	$(4.3 \pm 0.5) imes 10^{-8}$	[35]
	$^{210}\mathrm{Pb}$ - $0.01~\mu\mathrm{m}$	$(2.9 \pm 0.4) imes 10^{-8}$	[35]
PTFE holders	232 Th	$< 6.1 \times 10^{-6}$	[35]
	238 U	$<2.2\times10^{-5}$	[35]
	²¹⁰ Pb	$<2.2\times10^{-5}$	[35]
Environment	neutrons	$3.7{ imes}10^{-6}{ m cm}^{-2}s^{-1}$	[59]

Modular detector

L. Pattavina et al., JCAP 10 (2021) 064

Detector response studies to radioactive background sources – MC simulations

Detector energy response

RES-NOVA BACKGROUND MODEL

High multiplicity SN signal

Bkg goal: <10⁻³ ev/ton/keV/s in coincidence mode (no particle ID)

<0.086 c/keV/kg/d

L. Pattavina et al., JCAP 10 (2021) 064

High multiplicity bkg _____ Low-background

Detector energy spectrum for a SN @ 10 kpc

RES-NOVA SENSITIVITY

SMALL DETECTOR GREAT POTENTIAL

Target: archaeo-PbWO₄ Energy threshold: 1 keV Bkg @ ROI: 10-3 c/keV/ton/s/

L. Pattavina et al., *JCAP* 10 (2021) 064

Diffuse SN neutrino Background

ARE WE READY FOR THE NEXT SN ?

SN1987A neutrinos took 160,000 y to reach our detectors

→ In 2022 the most advanced EU neutrino detector went off-line

ARE WE READY FOR THE NEXT SN ?

RES-NOVA demo is funded Long-term science program on neutrino physics

Innovative experimental approach Multi-disciplinarity

Feasibility Proof of principle detectors gave promising results

Timeliness In the next 5 y there is ~10% of probability to observe a SN

