Max-Planck-Institut für Astrophysik

8 Neutrinos Dark Matter Messengers

SNvD 2023@LNGS

International Conference on Supernova Neutrino Detection Gran Sasso National Laboratory, Assergi, L'Aquila, Italy; May 29–June 01, 2023

Core-Collapse Supernovae in 3D

From the Explosion Mechanism to Observational Properties

Hans-Thomas Janka Max Planck Institute for Astrophysics

Shock revival

n, p

Proto-neutron star

0

Ni

n, p, α

Questions & Challenges

- Core collapse SN explosion mechanism(s)
- SN explosion properties; explosion asymmetries, mixing, gaseous remnant properties
- NS/BH formation paths and probabilities (GW sources)
- NS/BH birth properties: masses, kicks, spins, magnetic fields
- Neutrino and gravitational-wave signals
- Neutrino flavor oscillations, sterile neutrinos, impact of Beyond Standard Model (BSM) physics
- Heavy-element formation; what are the sites of the r-process(es)?
- What is the equation of state (EOS) of ultra-dense matter?

Improvements in Simulations since about 2000

- State-of-the-art <u>neutrino transport methods</u> (two-moment schemes with Eddington closure, Boltzmann solvers)
- General relativistic gravity or well-tested approximate GR
- <u>Comprehensive set of neutrino interactions</u> with more consistent and accurate treatment of the reaction rates
- <u>Modern nuclear equations of state</u> for hot neutron star matter, compatible with all experimental and astrophysical constraints
- <u>Muons included</u> in hot NS matter and neutrino interactions
- Modern progenitor models, partly <u>3D pre-collapse conditions</u>
- <u>3D core-collapse and explosion modeling</u>, Yin-Yang grid

3D self-consistent, ab-initio simulations with state-of-the-art physics yield successful explosions

Some 3D Explosion Models of Garching Group

Neutrino-driven explosions of low-mass progenitors need no trigger; higher-mass progenitors explode with rotation or slight changes of neutrino opacity.

527 ms 20 M_{sun} 9.6 M_{sun} 350 ms ΧZ 460 ms X 3000 km Isosurfaces: Entropy/Nucleon Colors: Radial Velocity, 1e9 cm/s -0.3 0.0 0.5 1.5 24

Melson et al., ApJL 801 (2015) L24

15 M_{sun}

Summa et al., ApJ 852 (2018) 28

Melson et al., ApJL 808 (2015) L42

BUT: Pre-collapse 3D asymmetries in progenitor stars turned out to be crucial for the explosion

Neon-oxygen-shell Merger in a 3D Pre-collapse Star of ~19 M

Flash of Ne+O burning creates large-scale asymmetries in density, velocity, Si/Ne composition

Yadav, Müller et al., ApJ 890 (2020) 94

3D Explosion of ~19 M_{sun} **Star** Explosion energy saturates at 10⁵¹ ergs after 7 seconds

30,000 km

0.0

0

1

 $\mathbf{2}$

3

 $t_{\rm pb}\left[{\rm s}\right]$

4

0.0

6

5

200 km

10,000 km

3D Explosion of ~19 M Star after Neon-oxygen-shell Merger

R. Bollig et al., ApJ 915 (2021) 28

Evolution of 3D CCSN Explosions Towards Energy Saturation

3D Core-Collapse SN Explosion Models

Garching/QUB/Monash:	9.0, 9.6, 15, 18, ~19, 20, BH cases: 40, 75 M _{sun}
Monash/QUB:	9.6, 11.8, 12, 12.5, he2.8, he3.0, he3.5 M _{sun} , BH cases
Oak Ridge/NCSU:	9.6, 15 M _{sun}
Fukuoka/Tokyo:	Large model grid> see Kei Kotake's talk
Caltech/LSU/Perimeter:	15, 20, 27, 40 M _{sun}
Princeton/Berkeley:	9–40 M _{sun} , large model grid> Adam Burrows' talk
MSU/Stockholm:	20 M _{sun} ,

Modeling inputs and results differ in various aspects. 3D code comparison is missing but desirable!

3D Core-Collapse SN Explosion Models

About half a dozen groups are active in 3D CCSN modeling:

Garching, Monash/QUB, Oak Ridge, Fukuoka/Tokyo, Caltech, Princeton/Berkeley, MSU/Stockholm

3D simulations differ in many aspects of numerics, physics inputs, and, qualitatively and quantitatively, in their outcomes. <u>3D code comparison is missing and highly desirable.</u>

(Plots from Kei Kotake's talk at MPA on March 29, 2023)

Onset of Explosion Depends on Nuclear Equation of State

Robert Bollig (MPA), Ex-PostDoc

Fig. 11 Shock radii and PNS radii (spherically averaged) in 3D simulations of CCSN explosions of a 19 M_{\odot} progenitor for different nuclear EoSs widely used in SN simulations: LS220 of Lattimer and Swesty (1991), SFHo, SFHx of Steiner et al. (2013) and Hempel and Schaffner-Bielich (2010), DD2 of Typel et al. (2010) and Hempel et al. (2012), and APR of Schneider et al. (2019a). In all cases, successful explosions were obtained in 3D core-collapse simulations started from 3D progenitor conditions (Yadav et al. 2020; Bollig et al. 2021), but there is a clear correlation between the onset of the explosion and the contraction of the PNS. The faster the PNS contracts, the earlier the explosion sets in. This signals the dominant relevance of the PNS radius evolution over other EoS dependent effects. (Figure courtesy of Robert Bollig)

Onset of Explosion Depends on (Fast) Neutrino Flavor Oscillations

General overview SN v oscillations: Jim Kneller's talk of 05/29!

Here: Fast pair-wise conversion of heavy-lepton neutrinos and antineutrinos with their higher mean energies to electron neutrinos and antineutrinos can boost the neutrino heating ====> leads to earlier explosion.

Neutrino-driven Explosion Models VS. Observations

Observational consequences Direct and indirect evidence for neutrino heating and hydrodynamic instabilities at the onset of stellar explosions:

- Neutrino signals (characteristic time dependencies)
- Gravitational-wave signals
- Neutron star kicks
- Asymmetric mass ejection & large-scale radial mixing in supernovae (elm. light curve shape, spectral features)
- Detailed comparison to young supernova remnants (e.g., Crab, Cas A, SN 1987A)
- Progenitor explosion remnant connection
- Nucleosynthesis

Observational consequences Direct and indirect evidence for neutrino heating and hydrodynamic instabilities at the onset of stellar explosions:

- Neutrino signals (characteristic time dependencies)
- Gravitational-wave signals
- Neutron star kicks
- Asymmetric mass ejection & large-scale radial mixing in supernovae (elm. light curve shape, spectral features)
- Detailed comparison to young supernova remnants (e.g., Crab, Cas A, SN 1987A)
- Progenitor explosion remnant connection
- Nucleosynthesis

Neutron Star Recoil in 3D Explosion Models

"Gravitational tug-boat" mechanism

$$v_{\rm NS} = 211 \,\rm km \, s^{-1} \, \left(\frac{f_{\rm kin}}{\epsilon_5 \,\beta_\nu}\right)^{1/2} \left(\frac{\alpha_{\rm ej}}{0.1}\right) \times \\ \times \left(\frac{E_{\rm exp}}{10^{51} \,\rm erg}\right) \left(\frac{M_{\rm NS}}{1.5 \,M_\odot}\right)^{-1}$$

Wongwathanarat, Janka, Müller, ApJL 725, 106 (2010); A&A 552, 126 (2013); Scheck et al., PRL 92, 011103 (2004), A&A 457, 963 (2006); Janka, ApJ 837, 84 (2017)

Asymmetric Ejection of Radioactive Nuclei and IME from Ne to Fe-group

Neutron Star Kicks and Young SN Remnants

Analysis of spatial distribution of IMEs (from Ne to Fegroup) in young, nearby SNRs with known NS kick velocities.

S. Katsuda, Morii, THJ, et al., ApJ 856 (2018) 18;

see also: Holland-Ashford, et al., ApJ 844 (2017) 84; Bear & Soker, ApJ 855 (2018) 82

Neutron Star Kicks and Young SN Remnants

Analysis of spatial distribution of IMEs (from Ne to Fe-group) in young, nearby SNRs with known NS kick velocities.

Katsuda, Morii, THJ, et al. ApJ 856 (2018) 18

Observational consequences Direct and indirect evidence for neutrino heating and hydrodynamic instabilities at the onset of stellar explosions:

- Neutrino signals (characteristic time dependencies)
- Gravitational-wave signals
- Neutron star kicks
- Asymmetric mass ejection & large-scale radial mixing in supernovae (elm. light curve shape, spectral features)
- Detailed comparison to young supernova remnants (e.g., Crab, Cas A, SN 1987A)
- Progenitor explosion remnant connection
- Nucleosynthesis

3D asymmetries from the onset of the explosion determine asymmetry of the SN ejecta and SN remnant. Modeling of the explosion has to be performed in 3D consistently from pre-collapse stage to SNR phase !

Sanduleak -69 202 Supernova 1987A 23. Februar 1987

Supernova 1987A (SN 1987A)

Sanduleak -69 202 Supernova 1987A 23. Februar 1987

Supernova 1987A (SN 1987A)

3D SN from Binary Model

Figure 9. Morphology of radioactive ⁵⁶Ni-rich ejecta in models M15-7b-1, M15-7b-2, M15-7b-3, and M15-7b-4. See caption of Figure 5 for details.

Utrobin et al., ApJ 914 (2021) 4

Single-star Models for SN1987A: Bolometric Light Curves from 3D Explosions

Hertzsprung-Russell Diagram for SN 1987A Progenitors.

Single Star Scenario

Self-consistent 3D simulations of explosions by neutrino heating do not produce sufficient outward mixing of Ni and inward mixing of H in most progenitors. Utrobin et al., A&A 624 (2019) A116

The total ⁵⁶Ni mass is scaled to fit the observed luminosity in the radioactive tail.

Binary-star Models for SN1987A: Bolometric Light Curves from 3D Explosions

Hertzsprung-Russell Diagram for SN 1987A Progenitors

Binary Merger Scenario

Menon & Heger (2017); Binary merger progenitors, following an original suggestion by Podsiadlowski and coworkers (1990ff)

Comparison of Single and Binary Stars:

Radial Mixing and Rayleigh-Taylor Growth Factors

Binary-star vs. Single-star Models for SN1987A:

Table 6. Comparative analysis of single-star and binary-merger models

Observational constraint	Single-star	Binary-merger
	B15-2 / W18x-2	M15-7b-3 / M15-8b-1
1. location of Sanduleak –69°202 in the HRD	- / +	+/+
2. production of ⁵⁶ Ni in 3D simulations	+/+	+/+
3. maximum velocity of the bulk of ⁵⁶ Ni	+/-	+/-
4. minimum velocity of hydrogen matter	+/+	+/+
5. mass of hydrogen with $v < 2000 \mathrm{km s^{-1}}$	-/-	+/+
6. dome shape of the light curve	+/-	+ / +
7. global shape of the light curve	- / -	+/-
8. evolution of the photospheric velocity	+/-	+/-
9. oxygen mass in the SN ejecta	-/-	+/+
10. 3D shape of the ⁵⁶ Ni ejecta	- / +	+/-
11. X-ray and gamma-ray emission	+ /	+/-
12. gamma-ray decay lines	+/-	-/-
Total score	7:12/4:11	<u>11 : 12 /</u> 6 : 12

Utrobin et al., ApJ 914 (2021) 4

Binary-star vs. Single-star Models for SN1987A:

Table 6. Comparative analysis of single-star and binary-merger models

Observational constraint	Single-star	Binary-merger
	B15-2 / W18x-2	M15-7b-3 / M15-8b-1
1. location of Sanduleak –69°202 in the HRD	- / +	+ / +
2. production of ⁵⁶ Ni in 3D simulations	+/+	+ / +
3. maximum velocity of the bulk of ⁵⁶ Ni	+/-	+/-
4. minimum velocity of hydrogen matter	+/+	+ / +
5. mass of hydrogen with $v < 2000 \text{ km s}^{-1}$	-/-	+ / +
6. dome shape of the light curve	+/-	+ / +
7. global shape of the light curve	-/-	+ / -
8. evolution of the photospheric velocity	+/-	+ / -
9. oxygen mass in the SN ejecta	-/-	+ / +
10. 3D shape of the ⁵⁶ Ni ejecta	- / +	+ / -
11. X-ray and gamma-ray emission	+ /	+/-
12. gamma-ray decay lines	+/-	-/-
Total score	7:12/4:11	11:12/6:12

Utrobin et al., ApJ 914 (2021) 4

Molecular CO 2-1 and SiO 5-4 emission observed by ALMA

Molecular CO 2-1 and SiO 5-4 emission observed by ALMA

Abellán et al., ApJL 842 (2017) L24

B15

W15 L15

N20

Molecular CO 2-1 and SiO 5-4 emission observed by ALMA

3D isosurfaces of iron and silicon ([Fell]+[Sil])

HST & VLT obs. (Larsson et al., ApJ 833 (2016) 147)

3D model L15 (Janka et al., arXiv:1705.01159)

SN 1987A: Gamma Lines of ⁴⁴Ti & ⁵⁶Co

Boggs et al. (2015): Redshifted ⁴⁴Ti lines suggest that NS in SN 1987A is likely to have fairly high kick towards us.

A Compact Object in SN1987A?

High angular resolution ALMA images of dust and molecules in the ejecta of SN 1987A

 10^{25}

(or, less likely, accretion by BH)

(Cigan et al., ApJ 886 (2019) 51; Page et al., ApJ 898 (2020) 125)

107

 10^{8}

 10^{9}

 10^{10}

 10^{11}

 10^{12}

 ν [Hz]

 10^{13}

 10^{14}

 10^{15}

A Compact Object in SN1987A?

High angular resolution ALMA images of dust and molecules in the ejecta of SN 1987A: Thermally cooling neutron star or PWN?

SN-remnant Cassiopeia A

X-ray (CHANDRA, green-blue); optical (HST, yellow); IR (SST, red)

Intermediate-mass-element Asymmetries in CAS A Remnant

Red: Ar, Ne, and O (optical) Purple: Iron (X-ray)

Image: Robert Fesen and Dan Milisavljevic, using iron data from DeLaney et al. (2010)

Chemical Asymmetries in CAS A Remnant

Iron in Cas A is visible in three big "fingers" in the remnant shell that is heated by reverse shock from circumstellar medium interaction.

Hot, shocked iron (observed)

Wongwathanarat et al., ApJ 842 (2017) 13

⁴⁴Ti Asymmetry in the CAS A Remnant

NuSTAR observations

Grefenstette et al., Nature 506 (2014) 340

Neutron Star Recoil and Nickel & 44Ti Distribution

Wongwathanarat et al., ApJ 842 (2017) 13

Grefenstette et al., Nature 506 (2014) 340

Cas A: Gamma-Ray Line Profiles of 44Ti

Line centroid of ⁴⁴Ti decay line strongly redshifted

Jerkstrand et al., MNRAS 494 (2020) 2471

NS in Cas A has high kick (~500-700 km/s) with small inclination angle (within <40-50 degrees) to line of sight.

Consistent with 3D analysis of 44Ti distribution by Grefenstette et al. (2017).

140

Observed 3D ⁴⁴Ti Distribution in CAS A

Figure 12. The 3D distribution of the observed 44 Ti ejecta compared with the IR [Si II] emission observed by *Spitzer* (DeLaney et al. 2010). The 44 Ti ejecta

Thick Disk Structure of CAS A Model

 $^{44}\mathrm{Ti}$ and $^{56}\mathrm{Ni}$ in a Cassiopeia A like 3D Supernova Model

Wongwathanarat et al., ApJ 842 (2017) 13

Evolution of 3D Supernova Model of CAS A into the Remnant Stage

Morphology of the remnant and distribution of chemical elements is affected by Rayleigh-Taylor instabilities growing between forward shock and reverse shock

CAS A evolution until ~1600 years

CAS A at ~360 years

Isosurface of Fe for 5% of Fe peak density; radial velocity color coded

red: shocked Fe blue: shocked Ti red: shocked Fe green: shocked Si

Orlando, Wongwathanarat, HTJ, et al., A&A 645 (2021) 645

Evolution of 3D Supernova Model of CAS A into the Remnant Stage

EM = Emission Measure $kT_e = electron temperature$ $n_et = ionization age$

kT_e [keV]

CAS A at 360 years

Orlando, Wongwathanarat, HTJ, et al., A&A 645 (2021) 645

FIG. 18: Distribution of emission measure vs. electron temperature (kT_e) and ionization age (n_et) at the epoch of Cas A derived from model W15-2-cw-IIb-HD+dec compared with the results of *Chandra* X-ray observations. The large white cross marks the ranges of kT_e and n_et derived from an X-ray survey of ejecta in Cas A (Hwang & Laming 2012); the small yellow crosses mark the values inferred from the analysis of regions dominated by thermal emission of shocked ambient gas (Lee et al. 2014).

Cas A "Jets" ?

Sulfur, silicon rich knots, moving with speeds up to ~15,000 km/s

Danny Milisavljevic, Purdue Univ. https://www.physics.purdue.edu/kab oom/casa-webapp/model.html CRAB Nebula with pulsar, remnant of Supernova 1054 CRAB Nebula with pulsar, remnant of Supernova 1054

"Crab-like" Supernovae 2005cs & 2020cxd

Low-mass, low-energy supernovae from Fe-core progenitors

Multi-band light curves from 3D explosion models agree very well with observations! **Progenitor** ~9 M_{sun} with Fe-core

- Explosion energy: ~7*10⁴⁹ erg
- Ni+Fe mass: ~3*10⁻³ M_{sun}
- Ejecta mass: ~7.4 M_{sun}

Nebular Spectra of Neutrino-driven Low-energy Explosion of 9.0 M_{sun} Fe-core Progenitor

Spectra and line profiles of 1D explosion model:

Good agreement with SN 1997D and SN 2008bk; SN 2005cs unclear

All cases show clear O and He lines and no high ⁵⁸Ni/⁵⁶Ni ratio

ECSNe disfavored; explosions of lowmass Fe-core progenitors more likely

Jerkstrand et al., MNRAS 475 (2018) 277

Low-energy Supernovae Constrain Radiative Particle Decays

Energy deposition by radiative decays of axion-like particles (ALPs) must not over-power low-energy, low-luminosity SNe

General overview of new physics and SN v's: Manibrata Sen's talk of 05/29!

3D Neutrino-driven Explosion Models Confronted with Observed Supernovae and Remnants

- Yield saturated explosion energies on time scales of seconds
- Match light curve and gamma-ray lines of SN 1987A
- Permit prediction of neutron star location in SN 1987A
- Explain multi-band light curves of low-energy SNe like Crab
- Reproduce 3D morphology and gamma-ray lines of Cas A

Conclusions

Neutrino-driven Explosions in Supernova Simulations

- Ab initio, self-consistent 2D and 3D simulations demonstrate viability of delayed neutrino-driven explosion mechanism
- Multi-D models of neutrino-driven explosions are sufficiently mature to test them against observations
- Problems and unsolved questions, e.g.:
 - * Results from different groups differ significantly
 - * Nuclear equation of state in (hot) neutron stars
 - * Neutrino flavor oscillations in dense environments
 - * Relevance of rotation and strong magnetic fields
 - * **Progenitor-explosion systematics in 3D**
 - * Effects of fallback and post-explosion accretion