

Supernova Neutrino Detection at the IceCube Neutrino Observatory

SNvD 2023 @ LNGS International Conference on Supernova Neutrino Detection

Segev BenZvi, for the IceCube Collaboration University of Rochester

Supernova Neutrinos in IceCube

Cas A SNR. Credit: NASA/JPL-Caltech/O. Krause

Core-collapse neutrinos (MeV):

- 10 s burst, 10^{53} erg in neutrinos.
- GC: 10⁵ to 10⁶ events in IceCube, no MeV event reconstruction.

Post-explosion neutrinos (TeV) produced in shock acceleration:

- >1000 v weeks to months after collapse; v_{μ} localization to <1°.
- Not covered here, but see e.g. <u>Murase+ 2011</u>, <u>Aartsen+ 2015</u>, <u>Necker 2021</u>, <u>Kheirandish &</u> <u>Murase 2022</u>, <u>Valtonen-Mattila</u> <u>& O'Sullivan 2023</u>.

IceCube & SN 2023ixf!

IceCube <u>was</u> running at the time of the breakout of SN 2023ixf (>99% uptime).

The **MeV** ν **burst** – which could have occurred ~1 week prior to breakout – could not be observed due to $1/r^2$ losses.

IceCube did search for TeV ν_{μ} events ±2 days from breakout. ATel #16043: null result.

The possibility of post-collapse TeV vproduction remains. If a coincident v is found IceCube will publish a realtime alert.

Detecting Neutrinos with IceCube

IceCube Neutrino Observatory: the world's largest particle detector.

- Design goal: observe origins of high-energy cosmic rays and astrophysical neutrinos.
- 5,160 single-PMT Digital Optical Modules (**DOMs**) buried in clear ice 1.4-2.4 km under South Pole.
- ~100,000 **atmospheric** neutrino candidates per year, > 5 GeV.
- Localized astrophysical neutrino candidates, > 100 TeV: ~1 month⁻¹.

Astrophysical Neutrino Candidates

IceCube v_{μ} track event.

CCSN Neutrinos in IceCube

IceCube and other CCSN v Detectors

Detector	Туре	Mass (kt)	Location	Events [10 kpc]
IceCube	Long string	600/DOM*	South Pole	500,000*
Hyper-K	water	374	Japan	75,000
KM3Net	Long string	111	France/Italy	10,000*
DUNE	LAr	40	USA	3,000
Super-K	water	32	Japan	7,000
JUNO	scintillator	20	China	6,000
NOvA	scintillator	15	USA	4,000
LVD	scintillator	1	Italy	300
KamLAND	scintillator	1	Japan	300
SNO+	scintillator	0.8	Canada	300
Baksan	scintillator	0.33	Russia	50
Borexino	scintillator	0.3	Italy	100
MicroBooNE	LAr	0.17	USA	17
HALO	Pb	0.08	Canada	30

MeV v Detection System in IceCube: Supernova DAQ + HitSpool

Independent DOM triggers at 0.25 PE \rightarrow discriminator crossings ("hits") in 2¹⁶ clock cycles @ 40 MHz \rightarrow counts in 1.6384 ms \rightarrow counts in **2 ms** bins.

Non-paralyzing artificial deadtime applied: results in ~300 Hz background per DOM.

Online alerts: rebinned counts in sliding windows (0.5 s, 1.5 s, 4.0 s, 10.0 s) with ±5 min sidebands to compute background count.

Offline alerts: HitSpool requests give access to full DOM waveforms 24 to 48 hr after alert, including readout sidebands. **25 ns** resolution.

Credit: D. Heereman (Ph.D., 2015)

CCSN v Hits in IceCube Post-Bounce

NEUTRON STAR

CCSN v Hits in IceCube Post-Bounce

BLACK HOLE

CCSN *v* Interactions in Ice Sheet

Simulated CCSN *v* interaction vertices producing PEs detected by IceCube DOMs.

Credit D. Creas, A. Eritz, C. Criswald, DeC/ICDC10), arVin 1009 07

DOM Effective Volume vs. Location

Variation in V_{eff} /DOM due to optical properties of the ice & QE of the PMTs.

SNvD 2023 @ LNGS: Supernova Neutrino Detection with IceCube

DOM Effective Volume: Systematics

Systematic Uncertainty	Relative Size [%]	
Rate deviation in sliding average window	± 1.6	
Ice density vs. depth	± 0.2	
Mean e^{\pm} track length in ice	± 5.0	
Ice optical properties	[-3.6, +4.1]	
DOM efficiency	± 10.0	
Artificial deadtime	± 3.0	
Cross Sections (e^+p , e^-p , e^-O)	$< \pm 1, < \pm 1, \pm 0.2$	
zenith-dependent neutrino oscillation in Earth	[-0.2, +4.9]	
Total	[-15.0, +16.2]	

Seasonal Backgrounds: TeV Muons

Seasonal Muon Rate Correction

Atmospheric muons (3 kHz trigger rate) produce clusters of hits that trigger the MeV system during CCSN signal windows.

Effect visible in correlation between ML test statistic ξ and muon rate significance proxy $\xi_{\mu} = (R_{\mu}^{\text{hit}} - \langle R_{\mu}^{\text{hit}} \rangle) / \sigma(R_{\mu}^{\text{hit}}).$

Zero out the correlation to produce a muon-corrected significance ξ_{corr} .

Discussion in Aartsen+ ApJ 890:111, 2020.

Seasonal Muon and False Alarm Rates: Before & After

SOUTH POLE NEUTRING OBSERVATORY ROCHESTER

Muon correction has a significant effect on the FAR of events with large TS (ξ).

Credit: A. Fritz, IceCube Collaboration [in prep.]

SNvD 2023 @ LNGS: Supernova Neutrino Detection with IceCube

IceCube Sensitivity: Model Dependence

Credit: A. Fritz, IceCube Collaboration [in prep.]

IceCube Sensitivity: TS Distribution of ξ_{corr}

19

SuperNova Early Warning System

YFNONnT (100 any_{-y})

https://doi.org/10.3847/1538-4357/ac350f

of Physics

Published in partnership

with: Deutsche Physikalische

Gesellschaft and the Institute

 V_{e}

LVD (400 \overline{v}_{e})

Deutsche Physikalische Gesellschaft

IOP Institute of Physics

HALO (10 ν_e, ν_x) **SNO+** (300 \bar{v}_{e}) **MicroBooNe** (10 v_e) **NOvA** $(4,000 \bar{v}_{e})$ **SBND** (20 v_e)

LZ (100 any-v) DUNE (6,000 v_{e})

IceCube (660,000

New Journal of Physics The open access journal at the forefront of physics

TOPICAL REVIEW

KM3NeT (37,000 \bar{v}_{o})

SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy

THE ASTROPHYSICAL JOURNAL, 925:107 (17pp), 2022 February 1 © 2022. The Author(s). Published by the American Astronomical Society. OPEN ACCESS

SNEWPY: A Data Pipeline from Supernova Simulations to Neutrino Signals

Amanda L. Baxter¹, Segev BenZvi², Joahan Castaneda Jaimes³, Alexis Coleiro⁴, Marta Colomer Molla⁵, Damien Dornic⁶, Tomer Goldhagen⁷, Anne Graf⁸, Spencer Griswold²⁽¹⁾, Alec Habig⁹, Remington Hill¹⁰, Shunsaku Horiuchi^{11,12}, James P. Kneller⁸⁽⁶⁾, Rafael F. Lang¹⁽⁶⁾, Massimiliano Lincetto¹³⁽⁶⁾, Jost Migenda¹⁴⁽⁶⁾, Ko Nakamura¹⁵⁽⁶⁾, Evan O'Connor¹⁶⁽⁶⁾, Andrew Renshaw¹⁷, Kate Scholberg¹⁸, Christopher Tunnell¹⁹, Navya Uberoi², and Arkin Worlikar²⁰

SNvD 2023 @ LNGS: Supernova Neutrino Detection with IceCube

ny-v)

 v_{e}, v_{x}

 (\bar{v}_{e})

 $(00 \ \bar{v}_e)$

ny-v)

neutrino detectors. Produce credible regions on the sky where telescopes

Right: SNEWS 2.0 firedrill alert localization without and with IceCube.

Triangulation baseline matters!

SNEWS 2022-10-20T13:56:38.906288

Progenitor localization with

combining signals from many

SNEWS is possible by

should point.

Future: IceCube-Gen2 Detector

Multi-PMT DOMs and CCSN v's

Similar to KM3Net, IceCube-Gen2 will have some version* of multi-PMT DOMs.

Multi-PMT DOMs and CCSN v's

Improved sensitivity vs. progenitor distance; considerable improvement in resolution of quasi-thermal CCSN neutrino spectrum.

Credit: L. Köpke 8th Symp. Large TPCs, 2017

Summary

IceCube as an MeV neutrino detector: no event reconstruction but excellent timing resolution (2 ms online, 25 ns offline), high statistics, and >99.7% uptime.

The observatory has model-independent sensitivity at $\gg 5\sigma$ to even the most conservative CCSN v flux predictions for progenitors anywhere in the Milky Way and $\geq 5\sigma$ sensitivity to most progenitors in the Magellanic Clouds. 4h 2h

IceCube is a core participant in SNEWS 2.0 and participates actively in detection and triangulation fire drills.

IceCube-Gen2 will incorporate multi-PMT DOMs: significant background reduction with coincidence cuts, improved sensitivity to CCSN *v* spectrum.